计算机视觉笔记
图像:二值图(0,1) 灰度图(0~255) 彩色图(RGB)
卷积:滤波器翻转 ,可使用乘法交换律
互相关:滤波器不翻转,不可使用乘法交换律
边缘检测:求导求极值,极值点即为边缘
高斯滤波器:
均值滤波器:
Sobel算子:
RANSAC(直线检测算法,模型匹配算法) RANdom Sample Consistence
- 随机选择一组种子点对模型进行初始的估计
- 根据初始的估计计算出局内点(到直线的距离小于阈值)
- 若局内点的个数大于阈值,则此次估计有效,利用最小二乘法对直线重新拟合
- 重复以上步骤,找出多条直线,选择其中局内点个数最多的一条作为最终的拟合结果
优:
- 应用于各种模型拟合算法,易实现
- 容易计算出失败概率
缺:
- 只能处理包含一定比例局外点的样本集
- 若局外点比例较高,则没有霍夫变换效果好
Canny边缘检测:
- 使用高斯滤波器去除噪声
- 求梯度的方向跟幅值
- 非极大值抑制
- 双阈值与连通性
Harris角点检测:
角点:在以角点为中心的邻域中,梯度有多个主要的方向,可被重复检测,包含丰富的信息且具有可区分性
角点检测:
- 计算图像x,y方向上的梯度Ix,Iy
- 使用高斯函数作为窗口函数
- 计算 sei ta
- 非极大值抑制
其他的关键点检测算法:
- Harris-拉普拉斯
- DOG高斯差分算法(具有尺度不变性):利用不同尺度的高斯差分算子与图像卷积,获得尺度空间,寻找极大值点
局部特征:
- 可重复性和准确性