计算机视觉期末笔记

计算机视觉笔记

图像:二值图(0,1) 灰度图(0~255) 彩色图(RGB)

卷积:滤波器翻转 ,可使用乘法交换律

互相关:滤波器不翻转,不可使用乘法交换律

边缘检测:求导求极值,极值点即为边缘

高斯滤波器

均值滤波器

Sobel算子


RANSAC(直线检测算法,模型匹配算法) RANdom Sample Consistence
  • 随机选择一组种子点对模型进行初始的估计
  • 根据初始的估计计算出局内点(到直线的距离小于阈值)
  • 若局内点的个数大于阈值,则此次估计有效,利用最小二乘法对直线重新拟合
  • 重复以上步骤,找出多条直线,选择其中局内点个数最多的一条作为最终的拟合结果

优:

  • 应用于各种模型拟合算法,易实现
  • 容易计算出失败概率

缺:

  • 只能处理包含一定比例局外点的样本集
  • 若局外点比例较高,则没有霍夫变换效果好

Canny边缘检测:
  • 使用高斯滤波器去除噪声
  • 求梯度的方向跟幅值
  • 非极大值抑制
  • 双阈值与连通性

Harris角点检测:

角点:在以角点为中心的邻域中,梯度有多个主要的方向,可被重复检测,包含丰富的信息且具有可区分性

角点检测

  • 计算图像x,y方向上的梯度Ix,Iy
  • 使用高斯函数作为窗口函数
  • 计算 sei ta
  • 非极大值抑制

其他的关键点检测算法:

  • Harris-拉普拉斯
  • DOG高斯差分算法(具有尺度不变性):利用不同尺度的高斯差分算子与图像卷积,获得尺度空间,寻找极大值点

局部特征:
  • 可重复性和准确性
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值