神经网络算法与Python(二):矩阵的应用

本文深入探讨了神经网络的基本原理,介绍了神经元的行为函数及其在矩阵运算中的应用。通过简单的两层神经网络示例,解释了如何使用权重矩阵和输入矩阵进行计算,以及如何将S函数(Sigmoid函数)应用于神经元输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考

一、Python神经网络编程(Tariq Rashid著)
二、CSDN博客以及简书

矩阵与神经网络

在上一节,我们已经讨论了一个简单的神经网络的由来和构造。我们选择了S函数作为每一个神经元的行为函数(即该神经元的输入*S函数=输出)。
那么神经网络到底是如何工作的呢?我们可以从最简单的一个神经网络出发,如下图下图所示:简单神经网络
注意,该图中的神经元并未对输入输出进行S函数处理。
由图可知,即便是一个简单的2层的神经网络的运算都比较繁琐。因此矩阵可以被应用在计算中:X=WI(W是权重矩阵,I是输入矩阵,X是该层神经元对输入信号的处理结果)。倘若考虑神经元本身的行为函数即S函数的话,我们只需要令O=sigmoid(X)即可。

同理对于多层神经元,只需要建立每一层神经元的权重矩阵即可。无论是第三层,第一百层还是一千层均一视同仁。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值