一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。 问

本文介绍了一个经典的动态规划问题——计算机器人从左上角到右下角的不同路径数量。通过使用二维数组dp进行状态转移,实现了对问题的有效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <vector>
using namespace std;

//一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
//机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
//问总共有多少条不同的路径?

// dp[i][j] = dp[i-1][j] + dp[i][j-1]

int m, n;
int *dp = new int((m+1)*(n+1));

int res() {
	for(int i = 0; i <= m; i++) {
		dp[i][0] = 1;
	}
	for (int i = 0; i <= n; i++) {
		dp[0][i] = 1;
	}
	for (int i = 1; i <= 7; i++) {
		for (int j =1; j <= 3; j++) {
			dp[i][j] = dp[i-1][j] + dp[i][j-1];
		}
	}
	return dp[7][3];
}


int main() {
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值