一、设计思想
1、核心
简单插入排序就类似于打牌前的摸牌,每摸一张牌,把牌按从小到大的顺序从左到右放置,每次你摸到一张牌就开始一张一张比较,移动已经放好的牌,放在找到的合适的位置上。
核心在于(1)找到合适的位置(2)移动数据
所以我们会把数据分为已排序部分和待排序部分
2、设计思想
(1)首先数据肯定是存放在数组中的,我们就先定义为arr[ ];把已排序部分的最后一个数据标记为 j ,把待排序部分的第一个数据标记为 j 。
(2)在每次排序之前先将待排序部分的第一个数据arr[ i ]存放在一个临时变量tmp中。
(3)比较已排序部分的最后一个数据arr[ j ]与tmp的大小,如果arr[j] > tmp
,则将arr[ j ]放在后一个位置上,再继续 j--
,从后向前比较放在已排序部分的每一个数据,如果数据大于tmp就继续j--
,并将数据向后移动;如果某个数据不大于tmp则说明找到了合适的位置,但是要注意的是,每次找的时候都会给j--
,所以当你找到的这个位置,是在 j 的后一位,所以最终**arr[j+1] = tmp
。**
二、代码实现
//简单插入排序
#include<stdio.h>
void InsertSort(int arr[], int len)
{
int i = 1;
int j = i-1;
int tmp = 0;
for (i; i < len; i++)
{
tmp = arr[i];
for (j = i - 1; j >= 0 && arr[j] > tmp; j--)//j >= 0 已排序部分还没有遍历完成
{
arr[j+1] = arr[j];
}
arr[j+1] = tmp;
}
}
int main()
{
int arr[] = { 12, 3, 21, 32, 1, 34, 12, 35, 34, 18 };
int len = sizeof(arr) / sizeof(arr[0]);
int i = 0;
InsertSort(arr, len);
for (i; i < len; i++)
{
printf("%d ", arr[i]);
}
printf("\n");
return 0;
}
三、效率
(1)时间复杂度:O(n)
(2)空间复杂度:O(1)
(3)稳定性:相同元素在排序前后相对应的位置是否发生变化
如果相同元素在排序前后相对应的位置没有发生变化,说明这算法是稳定的
举例:
所以在我们的算法中,最里层循环如果写成arr[j] >= tmp
,则算法是不稳定的