
神经网络深度学习技术汇总【1】
文章平均质量分 92
神经网络技术是一种模拟生物神经网络结构和功能的计算模型,能够处理输入和输出之间的复杂非线性关系,适用于各种非线性问题,如图像识别、语音识别等领域。神经网络具有并行计算的特性,可同时处理多个输入信息,提高计算效率,适用于处理大规模数据和实时性要求高的任务。可以自动从数据中提取有效的特征,减少了人工。
BinaryStarXin
专注于网络技术、各类计算机热门行业技术研究分享、嵌入式开发、人工智能、后端与前端等方面的技术知识文章分享,欢迎留言
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python 深度学习实战:有关神经网络建模、强化学习与迁移学习的解决方案【1.2】
连接越多,参数越多,建模越复杂。在下一个方案中,将展示一个过拟合的例子,并输出可训练参数的数量。在前面的方案中简单介绍了非线性激活函数Sigmoid 和 ReLU,还有很多流行的非线性激活函数,如 ELU、 Leaky ReLU、 TanH 和Maxout。这意味着在第一个隐层使用的隐层神经元最多,并且减少每个附加隐层的隐层神经元数量。请记住,这是一个经验法则,隐层和隐层神经元的数量应根据验证结果,通过反复试验与减小误差来获得。在中间,又开始增加隐层神经元的数量,直到隐层神经元的数量与输入变量的数量相同。原创 2025-01-15 20:09:59 · 1008 阅读 · 0 评论 -
Python 深度学习实战:有关神经网络建模、强化学习与迁移学习的解决方案【1.1】
Gluon 是使用广泛的深度学习框架的最新成员。Gluon 最近由 AWS 和微软公司推出,提供了简单、易于理解的代码,而不会损失性能。Gluon 已经包含在 MXNet 的最新版本中,将在未来版本的 CNTK(和其他框架)中提供。就像 Keras 一样, Gluon 是其他许多深度学习框架的一个封装。Keras 和 Gluon 的主要区别在于, Gluon 首先将重点放在命令框架上。如何去做…原创 2025-01-15 19:43:41 · 711 阅读 · 0 评论 -
Python 深度学习实战:有关神经网络建模、强化学习与迁移学习的解决方案【1.0】
深度学习的最新进展在一定程度上可以归因于计算能力的进步。计算能力的提高,更具体地说,就是使用 GPU(图形加速器)来处理数据,它推动了神经网络从浅层到更深层次的飞跃。在本章中,将向您展示如何为本书中使用的不同深度学习框架搭建稳定的环境,为后面的内容奠定基础。本书包含许多开源的深度学习框架,供研究人员和业内人士使用。每个框架都有其自身的优点,其中大多数是由一些大型科技公司提供的支持。仔细按照第 1 章中的步骤,读者应该能够使用本地或基于云的 CPU(中央处理器)和GPU(图形处理器)来充分利用本书中的方法。原创 2025-01-14 23:25:48 · 1080 阅读 · 0 评论 -
基于关系图卷积神经网络的多标签事件预测
利用卷积神经网络(Convolutional Neural Nelwork.CNN)的卷积和池化运算.压缩特征向量的同时提取组合时间段的特征信息.结合长短期记忆网络的时序特征提取能力.进一步提取预测数据的时序规律特征,最后以全连接的多标签分类器作为输出.进行多类型事件发生概率的预测。(1)数据方面由于支撑事件预测的数据字段内容描述维度众多由非结构化数据中提取的要素学在很大的稀疏性同时.数据中存在较多干扰预测吉果的不相关要素,因此导致预测模型巨大,计算复杂度高.预测准确率不理想。事件预测:多标签事件;原创 2023-04-24 09:37:21 · 803 阅读 · 0 评论