01 并查集

1. 并查集原理

在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中要反复用到查询某一个元素归属于哪个集合的运算。适合于描述这类问题的抽象数据类型称为并查集(union-findset)

比如:公司全国招10人,西安招4人,成都3人,武汉3人,10人来自不同的地区,每个人都是一个独立的小团体,现给这些学生编号{0,1,2,3,4,5,6,7,8,9},给以下数组用来存储小集体,数组中的数字代表:该小集体中有成员的个数(负号下文解释)

在这里插入图片描述
每个地方的人自发组成小分队一起上路,于是:
西安小分队s1={0,6,7,8},成都小分队s2={1,4,9},武汉小分队s3={2,3,5},就相互认识了,10个人形成了三个小团体,假设有三个群主0,1,2担任队长,负责大家的出行

在这里插入图片描述

渐渐每个小分队成员互相熟悉,成为了一个朋友圈
在这里插入图片描述

从上图可以看出,编号6,7,8同学属于0号分队,该分队有4人(包含队长0)编号4和9属于1号小分队,该小分队有3人(包含队长1),编号为3和5的同学属于2号小分队,该小分队有3人(包含队长1)

仔细观察数组内变化,可以得出下结论:
1.数组的下标对应集合中元素的编号
2.数组中如果为负数,那就是树的根,绝对值是集合中元素个数
3.数组中如果为非负数,就是双亲的下标

一段时间后,8号和1号走在了一起,两个小圈子互相介绍,最后成了一个小圈子
在这里插入图片描述
现在0号集合有7个人,2号集合有3个人,总共有两个朋友圈
通过以上例子可知,并查集一般可以解决以下问题:
1.查找元素属于哪个集合
沿着数组表示树形关系一直往上找到根,树中元素为负数的位置
2.查看两个元素是否属于同一个集合
沿着数组树形关系一直往上找到根,跟相同表示在同一个集合,否则不在
3.将两个集合归并成一个集合
将两个集合中的元素合并
讲一个集合名称改成另一个集合的名称
4.集合的个数
遍历数组,元素为负数的个数是集合的个数

2. 并查集实现

#pragma once
#include <vector>
#include <map>
#include <iostream>

// 通过名字找人
template <class T, T a = 30>
class FindSet
{
public:
	FindSet(const T* ary, size_t n)
	{
		for (size_t i = 0; i < n; i++)
		{
			// 建立映射
			_ary.push_back(ary[i]);
			_map[ary[i]] = i;
		}
	}

private:
	std::vector<T> _ary;  // 保存值,编号找人
	std::map<T, int> _map;     // 记录映射,人找编号
};

class UnionFindSet
{
public:
	UnionFindSet(int size)
		:_set(size, -1)
	{}

	size_t FindRoot(int x)
	{
		int root = x;
		while (_set[root] >= 0)
		{
			root = _set[root];
		}

		// 路径压缩
		while (_set[x] >= 0)
		{
			int parent = _set[x];
			_set[x] = root;

			x = parent;
		}
		return root;
	}

	// 合并
	void Union(int x1, int x2)
	{
		int root1 = FindRoot(x1);
		int root2 = FindRoot(x2);

		// x1已经与x2在同一个集合
		if (root1 != root2)
		{
			// 数据量小合大
			if (abs(_set[root1]) < abs(_set[root2]))
			{
				std::swap(root1, root2);
			}
			// 将两个集合中元素合并
			_set[root1] += _set[root2];
			// 将其中一个集合名称改变成另外一个
			_set[root2] = root1;
		}
	}

	bool InSet(int x1, int x2)
	{
		return FindRoot(x1) == FindRoot(x2);
	}

	// 数组中负数的个数,即为集合的个数
	size_t SetCount() const
	{
		int count = 0;
		for (auto ch : _set)
		{
			if (ch < 0)
			{
				count++;
			}
		}

		return count;
	}

	void Print()
	{
		for (auto ch : _set)
		{
			std::cout << ch << " ";
		}

		std::cout << std::endl;
	}

private:
	std::vector<int> _set;
};

3. 并查集应用

1.省份数量

在这里插入图片描述
思路
这个题考察并查集的应用,创建一个数组保存关系,遍历给的数组,不在一个集合的合并,最后返回并查数组的数量

class Solution {
public:
    int findCircleNum(vector<vector<int>>& isConnected) {

        vector<int> ufs(isConnected.size(), -1);
        auto findroot = [&](int root)
        {
            while (ufs[root] >= 0)
            {
                root = ufs[root];
            }

            return root;
        };

        for (int i = 0; i < isConnected.size(); i++)
        {
            for (int j =0 ; j < isConnected[i].size(); j++)
            {
                if (isConnected[i][j] == 1)
                {
                    // 合并集合
                    int root1 = findroot(i);
                    int root2 = findroot(j);

                    if (root1 != root2)
                    {
                        ufs[root1] += ufs[root2];
                        ufs[root2] = root1;
                    }
                }
            }
        }

        int count = 0;
        for (auto ch : ufs)
        {
            if (ch < 0)
            {
                count++;
            }
        }

        return count;
    }
};

2.等式方程的可满足性
在这里插入图片描述
思路
根据等式关系,为26个字母建立映射,使用并查集,如果是等号就在同一个集合。如果是不等号,但两个字母在同一个集合,就不满足方程了,返回false

class Solution {
public:
    bool equationsPossible(vector<string>& equations) {

        // 字母建立映射
        vector<int> ufs(26, -1);
        auto findroot = [&](int root) {
            while (ufs[root] >= 0) {
                root = ufs[root];
            }

            return root;
        };

        // 相等的加入集合
        for (auto ch : equations) {
            if (ch[1] == '=') {
                // 合并集合
                int root1 = findroot(ch[0] - 'a');
                int root2 = findroot(ch[3] - 'a');

                if (root1 != root2) {
                    ufs[root1] += ufs[root2];
                    ufs[root2] = root1;
                }
            }
        }

        // 不相等的判断相悖
        for (auto ch : equations) {
            if (ch[1] == '!') {
                int root1 = findroot(ch[0] - 'a');
                int root2 = findroot(ch[3] - 'a');
                if (root1 == root2) {
                    return false;
                }
            }
        }

        return true;
    }
};

3. 并查集优化

小和大

两个树合并的时候,让数据量小和到大的里面

// 数据量小合大
if (abs(_set[root1]) < abs(_set[root2]))
{
	std::swap(root1, root2);
}

路径压缩

如果数据量大不断合并后孩子节点过多,找跟的时候就会很慢。可以压缩一下路径
在查找跟的时候发现层数很多,间隔层很多,可以直接把这个节点连到他找到的根上,也可以把路径上所有节点都直接连到根,这样层数就得到了减少。是在不断查找的过程中压缩的路径

UnionFindSet ufs(10);
ufs.Union(8, 9);
ufs.Union(7, 8);
ufs.Union(6, 7);
ufs.Union(5, 6);
ufs.Union(4, 5);

对于上面的案例会出现类似单支的情况
在这里插入图片描述

// 路径压缩
while (_set[x] >= 0)
{
	int parent = _set[x];
	_set[x] = root;

	x = parent;
}

查找6和9压缩之后
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值