hdu 4417 Super Mario(离线树状数组)

本文介绍了一种使用离线树状数组解决区间查询问题的方法,通过实例讲解了如何利用树状数组进行区间内小于等于特定值的元素计数。此方法适用于批量查询场景,能够有效提高查询效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417

题意:给你n个数,m次查询,每次查询询问[l,r]区间内比小于等于h的数的个数。

思路:这一题看网上大部分题解都说用线段树,划分树,主席树什么的,其实这一题也可以用树状数组来求解。相当于离线树状数组。我们先将所有的查询用结构体存起来,按照h从小到大排序。并且将初始的数和其对应的下标用结构体存起来,并且按照值从小到大排序。之后我们遍历所有的查询,每次查询的时候将所有小于q[i].h的值的下标加1,一旦值大于q[i].h,我们便更新答案。因为所有的查询已经按照从小到大排好啦,所以前面更新的对后面的没有影响。

AC代码:

#include <map>
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

#define LL long long

const int maxn = 1e5 + 7;

struct node1 {
    int val;
    int id;
}a[maxn];

bool cmp1(node1 aa,node1 bb) {
    return aa.val < bb.val;
}

struct node2 {
    int l,r;
    int h;
    int id;
}q[maxn];

bool cmp2(node2 aa,node2 bb) {
    return aa.h < bb.h;
}

int c[maxn];
int n;

int lowbit(int x) {
    return x & (-x);
}

void update(int x,int y) {
    for(int i = x ; i <= n ; i += lowbit(i)) {
        c[i] += y;
    }
}

int query(int x) {
    int ans = 0;
    for(int i = x ; i > 0 ; i -= lowbit(i)) {
        ans += c[i];
    }
    return ans;
}

int ans[maxn];

int main() {
    int T;
    scanf("%d",&T);
    int cas = 1;
    while(T--) {
        int m;
        scanf("%d%d",&n,&m);
        for(int i = 1 ; i <= n ; i++) {
            scanf("%d",&a[i].val);
            a[i].id = i;
        }
        for(int i = 1 ; i <= m ; i++) {
            scanf("%d%d%d",&q[i].l,&q[i].r,&q[i].h);
            q[i].l++ , q[i].r++;
            q[i].id = i;
        }
        sort(a+1,a+n+1,cmp1);
        sort(q+1,q+m+1,cmp2);
        memset(c,0,sizeof(c));
        int cnt = 1;
        for(int i = 1 ; i <= m ; i++) {
            while(a[cnt].val <= q[i].h && cnt <= n) {
                update(a[cnt].id,1);
                cnt++;
            }
            ans[q[i].id] = query(q[i].r) - query(q[i].l - 1);
        }
        printf("Case %d:\n",cas++);
        for(int i = 1 ; i <= m ; i++) {
            printf("%d\n",ans[i]);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值