【Pytorch】pytorch和cuda版本对应及其安装命令

一个小故事

《我有个朋友》,刚入门科研信心满满,热血澎湃。有了自己小小的想法,满怀激动开始要动手实现一下。点开pycharm/jupyter,写下第一行import torch,run,然后…报错了。

网上好多博文就不要乱看了,很多都是搬运的

时效性差不说,可能还解决不了问题

直接上官网看,链接放在下面了,非常全

https://pytorch.org/get-started/previous-versions/

这里贴一小段,其他版本的大家自行查阅官网

Linux and Windows

# CUDA 10.2
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch

# CUDA 11.3
conda install pytorch
### 安装与特定CUDA版本兼容的PyTorch 为了确保GPU加速功能正常工作,安装与特定CUDA版本兼容的PyTorch至关重要。这涉及到几个关键步骤。 确认当前使用的CUDA版本对于选择合适的PyTorch版本非常重要[^1]。可以通过访问NVIDIA官方网站或其他可靠资源来查询已安装显卡驱动对应CUDA版本号。 一旦知道了所需的CUDA版本,下一步是从官方渠道获取相匹配的PyTorch版本。通过查阅历史版本页面可以找到不同CUDA版本对应PyTorch版本列表[^2]。例如,在[Previous PyTorch Versions](https://pytorch.org/get-started/previous-versions/)网站上能够查到多种组合方式供用户挑选最适合自己环境的那一款。 当选择了正确的PyTorchCUDA版本之后,则可以根据个人偏好采用pip或conda命令完成安装操作。下面是一个基于pip工具的例子: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 上述命令适用于希望安装支持CUDA 11.3的PyTorch版本的情况;如果需要其他CUDA版本的支持,请调整URL中的`cu113`部分以反映目标CUDA版本编号。 最后需要注意的是,务必验证新安装PyTorch能否识别并利用现有的CUDA设置来进行计算任务。可以通过运行简单的测试脚本来检验这一点,比如打印出可用设备的信息以及尝试执行一些基本的操作来观察是否有任何错误提示发生。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小丫么小阿豪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值