Redis学习-狂神说java

学习视频来源:【狂神说Java】Redis最新超详细版教程通俗易懂

一、Nosql概念

1、为什么要用Nosql

1、mysql单机时代

90年代,一个基本的网站访问量一般不会太大,单个数据库完全足够!那个时候,更多的去使用静态网页Html~服务器根本没有太大的压力!思考一下,这种情况下:整个网站的瓶颈是什么?
1、数据量如果太大、一个机器放不下了!
2、数据的索引( B+ Tree ) ,一个机器内存也放不下
3、访问量(读写混合),一个服务器承受不了~
只要你开始出现以上的三种情况之一,那么你就必须要晋级!

2、Memchached(缓存)+mysql+垂直拆分

网站80%的情况都是在读,每次都要去查询数据库的话就十分的麻烦!所以说我们希望减轻数据的压力,我们可以使用缓存来保证效率!
发展过程:优化数据结构和索引–>文件缓存(IO ) —> MemcachedI
在这里插入图片描述

3、分库分表+水平拆分+MySQL集群

早些年MyISAM:表锁,十分影响效率!高并发下就会出现严重的锁问题转占战
Innodb:行锁
慢慢的就开始使用分库分表来解决写的压力! MySQL在哪个年代推出了表分区!这个并没有多少公司使用!
MySQL的集群,才解决了当时的需求。

4、最近的时代

现在的定位,音乐、热榜…………都是刷新很快的
MySQL等关系型数据库就不够用了!数据量很多,变化很快~!
MySQL有的使用它来村粗一些比较大的文件,博客,图片!数据库表很大,效率就低了!如果有一种数据库来专门处理这种数据,MySQL压力就变得十分小(研究如何处理这些问题!)大数据的IO压力下,表几乎没法更大!
在这里插入图片描述

用户的个人信息、社交网络、地理位置、用户自己产生的数据,用户日志等等爆发式增长
这时候我们就需要使用Nosql数据库,nosql可以很好的处理以上的情况

2、什么是NoSQL

NoSQL = Not Only SQL(不仅仅是sql)
泛指非关系型数据库,随着web2.0互联网的诞生,传统的关系型数据库很难对付web2.0时代,尤其是超大规模的高并发的社区。暴露出来很多难以克服的问题,Nosql在当今大数据环境下发展十分迅速,redis发展很快,必须掌握
很多数据类型用户的个人信息,社交网络、地理位置、用户自己产生的数据,这些数据类型的存储不需要一个固定的格式!不需要过多的操作就可以横向扩展!!Map<String,Object>使用键值对

1、NoSQL特点

1、方便扩展(数据之间没有关系,很好扩展)
2、大数据量高性能(redis 一秒写8万次,读11万次,Nosql的缓存记录级,是一种细粒度的缓存,性能会比较高)
3、数据库类型是多样型!(不需要事先设计数据库,随去随用,如果是数据量十分大的表,很多人就无法设计了)
4、传统的RDBMS和Nosql
传统的RDBMS

  • 结构化组织
  • SQL
  • 数据和关系都存在单独的表中
  • 严格的一致性
  • 基础的事务
  • ………………

Nosql

  • 不仅仅是数据
  • 没有固定的查询语言
  • 键值对存储,列存储,文档存储,图像数据库
  • 最终一致性
  • CAP定理和BASE
  • 高性能、高可用、高扩展

3、数据库的使用场景

1、商品的基本信息

  • 名称、价格、商家信息:
  • 关系型数据库就可以解决了! MysQL / oracle (淘宝早年就去ToE了!。王坚:推荐文章。阿里云的这群疯子:40分钟重要!淘宝内部的MysQL不是大家用的MysQL

2、商品的捐述、评论(文字比较多)

  • 文档型数据库中,MongoDB

3、图片

  • 分面式文件系统 FastDFS
  • 淘宝自己的 TFS
  • Gooale的 GFs
  • Hadoop HDFS
  • 阿里云的 oss

4、商品的关键字(搜索)

  • 搜索引擎 solr elasticsearch
  • ISerach:阿里巴巴——多隆开发

5、商品热门的波动信息

  • 内存数据库
  • redis Tair、Memache……

6、商品的交易,外部的支付接口

  • 三方应用

二、NoSQL的四大分类

KV键值对:

  • 新浪:Redis
  • 美团:Redis+Tair
  • 阿里、百度:Redis+memecache

文档型数据库( bson格式和json一样):

  • MongoDB(一般必须要掌握)
    • MongoDB是一个基于分布式文件存储的数据库,C++编写,主要用来处理大量的文档!
    • MongoDB是一个介于关系型数据库和非关系型数据中中间的产品 !MongoDB是非关系型数据库中功能最丰富,最像关系型数据库的!
  • ConthDB
    列存储数据库
  • HBase
  • 分布式文件系统

图关系数据库

  • 不是用来存图形,用来存关系的,比如:朋友圈社交网络,广告推荐。
  • Neo4j,InfoGrid;
    在这里插入图片描述

三、Redis入门

1、概述

Redis是什么?

  • Redis(Remote Dictionary Server),即远程字典服务
  • 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。
  • redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。

Redis能干什么?

1、内存存储、持久化、内存中是断电即失、所以说持久化很重要(rdb、aof)
2、效率高、可以用于高速缓存
3、发布订阅系统
4、地图信息分析
5、计数器、计时器(浏览器)
………………

特性

1、多样的数据类型
2、持久化
3、集群
4、事务
…………

2、Redis安装

windows安装
在这里插入图片描述
liunx安装redis,官网建议使用liunx运行redis,不建议使用windows
1、官网下载redis
redis官网下载
2、将下载的压缩包上传到liunx系统的/opt目录中,并解压
在这里插入图片描述
3、安装gcc-c++依赖,进入redis解压后的目录进去编译安装

yum install gcc-c++ -y

cd /redis-7.0.5
make && make install

4、进入redis的默认安装目录,将/opt/redis-7.0.5中的redis.conf文件复制到当前目录下

cd /usr/local/bin

在这里插入图片描述
进入redis.conf将redis改为后台启动,daemonize 改为yes
在这里插入图片描述
5、指定配置文件,启动redis
./redis-server redis.conf

6、启动客户端连接测试

#指定端口启动客户端
[root@localhost bin]# redis-cli -p 6379
#设置key v值
127.0.0.1:6379> set namq jjl
OK
#获取key
127.0.0.1:6379> get namq
"jjl"
#查看当前所有key
127.0.0.1:6379> keys *
1) "namq"
#查看redis进程
[root@localhost bin]# ps -ef|grep redis
root      11564      1  0 11:40 ?        00:00:01 ./redis-server 127.0.0.1:6379
root      12609   2156  0 11:42 pts/0    00:00:00 grep --color=auto redis
[root@localhost bin]# redis-cli -p 6379
#关闭redis
127.0.0.1:6379> shutdown
not connected> exit
[root@localhost bin]# ps -ef|grep redis
root      12774   2156  0 11:43 pts/0    00:00:00 grep --color=auto redis

3、性能测试工具

redis-benchmark是一个压力测试工具
官方自带的性能测试工具
lis-benchmark -h
在这里插入图片描述
简单测试

# 测试:100个并发连接 100000个请求
[root@localhost bin]# redis-benchmark -h localhost -p 6379 -c 100 -n 100000
====== PING_INLINE ======
# 对100000请求进行写入测试
  100000 requests completed in 2.18 seconds
  #100并发
  100 parallel clients
  #每次下入三个字节
  3 bytes payload
  #每次只有一台服务器处理这些请求
  keep alive: 1
  host configuration "save": 3600 1 300 100 60 10000
  host configuration "appendonly": no
  multi-thread: no

Latency by percentile distribution:
0.000% <= 0.223 milliseconds (cumulative count 1)
50.000% <= 0.799 milliseconds (cumulative count 51267)
…………
100.000% <= 48.383 milliseconds (cumulative count 100000)

Cumulative distribution of latencies:
0.000% <= 0.103 milliseconds (cumulative count 0)
0.008% <= 0.303 milliseconds (cumulative count 8)
0.030% <= 0.407 milliseconds (cumulative count 30)
0.094% <= 0.503 milliseconds (cumulative count 94)
0.483% <= 0.607 milliseconds (cumulative count 483)
…………
99.937% <= 47.103 milliseconds (cumulative count 99937)
99.992% <= 48.127 milliseconds (cumulative count 99992)
100.000% <= 49.119 milliseconds (cumulative count 100000)

Summary:
  throughput summary: 45808.52 requests per second
  latency summary (msec):
          avg       min       p50       p95       p99       max
        1.184     0.216     0.799     3.695     5.359    48.383

四、redis基础知识

1、数据库、切换数据库

redis有16个数据库,默认使用的是通过0到15来区别,默认使用第0号数据库(可以在redis.config中查看),可以在客户端中使用select <数据库号>来切换数据库
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
清空当前数据库 flushdb
在这里插入图片描述
清空全部数据库 FLUSHALL

127.0.0.1:6379> keys *
1) "counter:__rand_int__"
2) "mylist"
3) "namq"
4) "myhash"
5) "key:__rand_int__"
127.0.0.1:6379> FLUSHALL
OK
127.0.0.1:6379> keys *
(empty array)
127.0.0.1:6379> select 3
OK
127.0.0.1:6379[3]> keys *
(empty array)
127.0.0.1:6379[3]>

Redis是单线程的!!!
官方表示,Redis是基于内存提作,CPU不是Redis性能瓶颈,Redis的瓶颈是根据机器的内存和网络带宽,既然可以使用单线程来实现,就使用单线程了!所有就使用了单线程了!Redis 是C语言写的,官方提供的数据为 100000+ 的QS,完全不比同样是使用 key-vale!Memecache差!

Redis 为什么单线程还这么快 ?
1、误区1:高性能的服务器一定是多线程的?
2、误区2、多线程一定比单线程快

核心:redis 是将所有的数据全部放在内存中的,所以说使用单线程去操作效率就是最高的,多线程(CPU上下文会切换:耗时的提作!!!),对于内存系统来说,如果没有上下文切换效率就是最高的!多次读写都是在一个CPU上的,在内存情况下,这个就是最佳的方案!

2、五大基本数据类型

Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库、缓存、消息中间件MQ,高速缓存和消息队列代理。它支持字符串、哈希表、列表、集合、有序集合,位图,hyperloglogs等数据类型。内置复制、Lua脚本、LRU收回、事务以及不同级别磁盘持久化功能,同时通过Redis Sentinel提供高可用,通过Redis Cluster提供自动分区。

1、Redis-Key

[root@localhost bin]# redis-cli -p 6379
127.0.0.1:6379> set name jjl
OK
127.0.0.1:6379> set age 10
OK
127.0.0.1:6379> keys *
1) "age"
2) "name"

#判断key是否存在,如果存在返回“1”,不存在返回“0”
127.0.0.1:6379> EXISTS name
(integer) 1
127.0.0.1:6379> EXISTS name1
(integer) 0
#移除当前的key,move key名称 1表示当前数据库
127.0.0.1:6379> move name 1
(integer) 1
127.0.0.1:6379> keys *
1) "age"
127.0.0.1:6379> set name qinjiang
OK
#让name 10秒后过期
127.0.0.1:6379> EXPIRE name 10
(integer) 1
#查看name还剩多久过期
127.0.0.1:6379> ttl name
(integer) 2
127.0.0.1:6379> get name
(nil)
127.0.0.1:6379>

查看key的类型 type < key name >

127.0.0.1:6379> keys *
1) "age"
2) "name"
127.0.0.1:6379> type name
string
127.0.0.1:6379> type age
string

2、String(字符串)

# 设置值
127.0.0.1:6379> set key1 v1
OK
# 获取值
127.0.0.1:6379> get key1
"v1"
#判断key是否存在
127.0.0.1:6379> EXISTS key1
(integer) 1
# 追加字符串,如果被追加的key不存在,那么这个追加就相当于set
127.0.0.1:6379> APPEND key1 "hello"
(integer) 7
127.0.0.1:6379> get key1
"v1hello"
# 获取key的长度
127.0.0.1:6379> STRLEN key1
(integer) 7

模拟浏览量,key自增自减

127.0.0.1:6379> set views 0
OK
# 自增1
127.0.0.1:6379> incr views
(integer) 1
127.0.0.1:6379> incr views
(integer) 2
127.0.0.1:6379> get views
"2"
# 自减1
127.0.0.1:6379> decr views
(integer) 1
127.0.0.1:6379> get views
"1"
127.0.0.1:6379> type views
string
# 设置步长,+10
127.0.0.1:6379> INCRBY views 10
(integer) 11
127.0.0.1:6379> type views
string
127.0.0.1:6379> get views
"11"
# 设置步长,-5
127.0.0.1:6379> DECRBY views 5
(integer) 6
127.0.0.1:6379> get views
"6"
127.0.0.1:6379>

字符串截取

127.0.0.1:6379> FLUSHdb
OK
127.0.0.1:6379> set key1 "hell,redis"
OK
127.0.0.1:6379> get key1
"hell,redis"
#截取字符串【0-3】
127.0.0.1:6379> GETRANGE key1 0 3
"hell"
#获取全部字符串
127.0.0.1:6379> GETRANGE key1 0 -1
"hell,redis"
127.0.0.1:6379>

字符串替换

127.0.0.1:6379> set key2 qwerty
OK
# 将第二个字符串替换为“xx“
127.0.0.1:6379> SETRANGE key2 1 xx
(integer) 6
127.0.0.1:6379> get key2
"qxxrty"
127.0.0.1:6379>

创建key并设置过期时间;判断key是否存在,如果不存在则创建,反之不创建

# 创建key3,值为hello,过期时间为30秒
127.0.0.1:6379> setex key3 30 "hello"
OK
# 查看剩余过期时间
127.0.0.1:6379> TTL key3
(integer) 23
# 创建mykey值为redis,如果mykey不存在则创建并赋值
127.0.0.1:6379> SETNX mykey redis
(integer) 1
127.0.0.1:6379> get mykey
"redis"
# 由于mykey已存在,所以会创建失败,更不会替换mykey得值
127.0.0.1:6379> SETNX mykey mysql
(integer) 0
# key3已失效
127.0.0.1:6379> get key3
(nil)
127.0.0.1:6379>

同时设置,获取值

#同时创建4个k:v
#k1:v1
#k2:v2
#k3:v3
127.0.0.1:6379> mset k1 v1 k2 v2 k3 v3
OK
127.0.0.1:6379> keys *
1) "k3"
2) "k2"
3) "k1"
#同时获取k1,k2,k3的值
127.0.0.1:6379> mget k1 k2 k3
1) "v1"
2) "v2"
3) "v3"
# msetnx是原子性的操作,要么全部成功,要么全部失败,这里由于已经有k1了,所以k4也不会一起失败。
127.0.0.1:6379> MSETNX k1 v10 k4 v4
(integer) 0
127.0.0.1:6379> keys *
1) "k3"
2) "k2"
3) "k1"

保存对象
set user:1{name:zhangsan,age:3} 设置一个user:1对象,值为json字符串来保存一个对象

# 这里key是一个巧妙的设计:user:{id}:{filed},如此设计在redis中是可以的
127.0.0.1:6379> mset user:1:name zhangsan user:1:age 2
OK
127.0.0.1:6379> mget user:1:name user:1:age
1) "zhangsan"
2) "2"

getset组合

# 如果db存在,则返回当前的db的值再设置新的值(redis);否则返回nil,并创建db赋值为redis
127.0.0.1:6379> getset db redis
(nil)
127.0.0.1:6379> get db
"redis"
# 返回当前db的值,并将db的值设置为mongodb
127.0.0.1:6379> getset db mongodb
"redis"
127.0.0.1:6379> get db
"mongodb"

string类似的使用场: value除了是我们的字符串还可以是我们的数字!

  • 计数器
  • 统计多单位的数量
  • 粉数
  • 对象缓存存储!

3、list

在redis里面,我们可以把list用作栈、队列、阻塞队列等

# 往list里面push值,lpush是从列表左边添加值
127.0.0.1:6379> lpush list noe
(integer) 1
127.0.0.1:6379> lpush list two
(integer) 2
127.0.0.1:6379> lpush list tree
(integer) 3
#获取里面所有的值
127.0.0.1:6379> LRANGE list 0 -1
1) "tree"
2) "two"
3) "noe"
#获取从第1第2个值,最先当进去的值排在最后
127.0.0.1:6379> LRANGE list 0 1
1) "tree"
2) "two"

#从列表的右边添加值
127.0.0.1:6379> RPUSH list right
(integer) 4
127.0.0.1:6379> LRANGE list 0 1
1) "tree"
2) "two"
127.0.0.1:6379> LRANGE list 0 -1
1) "tree"
2) "two"
3) "noe"
4) "right"

# 移除
# 移除左边第一个值
127.0.0.1:6379> LPOP list
"tree"
127.0.0.1:6379> LRANGE list 0 -1
1) "two"
2) "noe"
3) "right"
#移除右边第一个值
127.0.0.1:6379> rPOP list
"right"
127.0.0.1:6379> LRANGE list 0 -1
1) "two"
2) "noe"
127.0.0.1:6379>

# 根据下标获取list的某个值
127.0.0.1:6379> LINDEX list 1
"noe"
127.0.0.1:6379> LINDEX list 0
"two"
127.0.0.1:6379> LRANGE list 0 -1
1) "two"
2) "noe"

# 获取队列长度
127.0.0.1:6379> llen list
(integer) 2

# 移除指定的值
#移除list中1个one
127.0.0.1:6379> LREM list 1 noe
(integer) 1
127.0.0.1:6379> LRANGE list 0 -1
1) "five"
2) "fore"
3) "three"
4) "two"

#通过下标截取指定长度
127.0.0.1:6379> RPUSH mylist "hello1"
(integer) 1
127.0.0.1:6379> RPUSH mylist "hello"
(integer) 2
127.0.0.1:6379> RPUSH mylist "hello2"
(integer) 3
127.0.0.1:6379> RPUSH mylist "hello3"
(integer) 4
127.0.0.1:6379> LRANGE mylist 0 -1
1) "hello1"
2) "hello"
3) "hello2"
4) "hello3"
# 截取第二到第三个
127.0.0.1:6379> LTRIM mylist 1 2
OK
127.0.0.1:6379> LRANGE mylist 0 -1
1) "hello"
2) "hello2"

#将列表的最后一个元素移动到另一个列表中
127.0.0.1:6379> LRANGE mylist 0 -1
1) "hello"
2) "hello2"
#将mylist的最后一个元素,移动到myotherlist中
127.0.0.1:6379> RPOPLPUSH mylist myotherlist
"hello2"
127.0.0.1:6379> LRANGE myotherlist 0 -1
1) "hello2"
127.0.0.1:6379> LRANGE mylist 0 -1
1) "hello"
127.0.0.1:6379>

#指定下标替换
#将list中第一个元素替换为item
127.0.0.1:6379> lset list 0 item
OK
127.0.0.1:6379> LRANGE list 0 -1
1) "item"
2) "fore"
3) "three"
4) "two"
# 由于没有第五个下标,所以会报错
127.0.0.1:6379> lset list 4 item
(error) ERR index out of range

#将某个具体的value插入到指定值的后面或者前面
127.0.0.1:6379> LINSERT list after two new
(integer) 5
127.0.0.1:6379> LRANGE list 0 -1
1) "item"
2) "fore"
3) "three"
4) "two"
5) "new"
127.0.0.1:6379> LINSERT list before two new
(integer) 6
127.0.0.1:6379> LRANGE list 0 -1
1) "item"
2) "fore"
3) "three"
4) "new"
5) "two"
6) "new"

小结:

  • 它实际上是一个链表,before Node after,left,right,都可以插入值
  • 如果key不存在,创建新的链表
  • 如果key存在,新增内容
  • 如果移除了所有值,空链表,也代表不存在
  • 在两边插入或者改动值,效率最高,相反来说效率会低一些
    消息队列!消息队列(lpush Rpop) 栈(lpush lpop)

4、set(集合)

127.0.0.1:6379> sadd myset hello # set集合中添加元素
(integer) 1
127.0.0.1:6379> sadd myset jjl
(integer) 1
127.0.0.1:6379> sadd myset lovejjl
(integer) 1
127.0.0.1:6379> SMEMBERS myset  # 查看指定set的所有值
1) "jjl"
2) "hello"
3) "lovejjl"
127.0.0.1:6379> SISMEMBER myset hello   # 判断myset中是否存在hello
(integer) 1
127.0.0.1:6379> SISMEMBER myset hello1
(integer) 0
# 查看set中的个数
127.0.0.1:6379> SCARD myset
(integer) 3
# 移除myset中的hello元素
127.0.0.1:6379> srem myset hello
(integer) 1
127.0.0.1:6379> SMEMBERS myset
1) "jjl"
2) "lovejjl"

# 随机获取一个元素
127.0.0.1:6379> SRANDMEMBER myset
"jjl"
127.0.0.1:6379> SRANDMEMBER myset
"lovejjl"
# 随机获取指定个数的元素
127.0.0.1:6379> SRANDMEMBER myset 2
"jjl"
127.0.0.1:6379> SRANDMEMBER myset
"jjl"
127.0.0.1:6379>

#随机删除一个元素
127.0.0.1:6379> spop myset
"hello1"
127.0.0.1:6379> SMEMBERS myset
1) "jjl"
2) "lovejjl"
3) "hello"
4) "hello2"
5) "hello3"
127.0.0.1:6379> sadd myset2 java
(integer) 1
#将myset中的jjl移动到myset2集合中
127.0.0.1:6379> SMOVE myset myset2 jjl
(integer) 1
127.0.0.1:6379> SMEMBERS myset2
1) "jjl"
2) "java"
127.0.0.1:6379>

#差集、交集、并集
127.0.0.1:6379> sadd key1 a
(integer) 1
127.0.0.1:6379> sadd key1 b
(integer) 1
127.0.0.1:6379> sadd key1 c
(integer) 1
127.0.0.1:6379> sadd key2 c
(integer) 1
127.0.0.1:6379> sadd key2 d
(integer) 1
127.0.0.1:6379> sadd key2 e
(integer) 1
# 以key1为准,与key2做差集
127.0.0.1:6379> SDIFF key1 key2
1) "b"
2) "a"
# 交集
127.0.0.1:6379> sinter key1 key2
1) "c"
# 并集
127.0.0.1:6379> sunion key1 key2
1) "c"
2) "b"
3) "a"
4) "d"
5) "e"

使用场景:
微博,A用户将所有关注的人放在一个set集合中!他的粉丝也可以放在set中

5、hash(哈希)

Map集合,key-map这时候这个值就是一个map集合,本质和string类型没有太大区别,本质还是key-vlaue

#set一个key-value
127.0.0.1:6379> hset myhash field1 jjl
(integer) 1
# 获取一个值
127.0.0.1:6379> hget myhash field1
"jjl"
# set多个key-value
127.0.0.1:6379> hmset myhsah field1 hello field2 world
OK
#get多个值
127.0.0.1:6379> hmget myhsah field1 field2
1) "hello"
2) "world"
# get全部
127.0.0.1:6379> hgetall myhsah
1) "field1"
2) "hello"
3) "field2"
4) "world"

# 删除指定的key,删除之后对应的value也会被删除
127.0.0.1:6379> hdel myhsah field1
(integer) 1
127.0.0.1:6379> hgetall myhsah
1) "field2"
2) "world"
# 获取myhsah的长度
127.0.0.1:6379> hlen myhsah
(integer) 1
127.0.0.1:6379> hmset myhsah field1 hello
OK
# 判断key是否存在
127.0.0.1:6379> HEXISTS myhsah field1
(integer) 1
# 获取全部的key
127.0.0.1:6379> hkeys myhsah
1) "field2"
2) "field1"
# 获取全部的value
127.0.0.1:6379> hvals myhsah
1) "world"
2) "hello"

127.0.0.1:6379> hset myhash field3 5
(integer) 1
# 设置field3自增1
127.0.0.1:6379> HINCRBY myhash field3 1
(integer) 6
#设置field3自减1
127.0.0.1:6379> HINCRBY myhash field3 -1
(integer) 5
#set一个值如果不存在则就set
127.0.0.1:6379> HSETNX myhash field4 hello
(integer) 1
# 如果存在则就不做修改
127.0.0.1:6379> HSETNX myhash field4 hello
(integer) 0
127.0.0.1:6379>

6、Zset(有序集合)

在set的基础上,增加了一个值,set k1 v1 ; zset k1 score v1

# 添加值,也可以同时添加多个
127.0.0.1:6379> zadd myset 3 three
(integer) 1
127.0.0.1:6379> ZRANGE myset 0 -1
1) "one"
2) "two"
3) "three"

#模拟排序,添加三个值
127.0.0.1:6379> ZADD salary 2500 xiaoming
(integer) 1
127.0.0.1:6379> ZADD salary 2500 xiaohong
(integer) 1
127.0.0.1:6379> ZADD salary 5000 xiaozhang
(integer) 1
127.0.0.1:6379> ZADD salary 500 zhangsan
(integer) 1
# 从小到大排序
127.0.0.1:6379> ZRANGEBYSCORE salary -inf +inf
1) "zhangsan"
2) "xiaohong"
3) "xiaoming"
4) "xiaozhang"
# 从大到小排序
127.0.0.1:6379> ZREVRANGE salary 0 -1
1) "xiaozhang"
2) "xiaoming"
3) "xiaohong"
4) "zhangsan"

# 排序并显示所有值
127.0.0.1:6379> ZRANGEBYSCORE salary -inf +inf withscores
1) "zhangsan"
2) "500"
3) "xiaohong"
4) "2500"
5) "xiaoming"
6) "2500"
7) "xiaozhang"
8) "5000"
# 升序排列并只显示小于2500的
127.0.0.1:6379> ZRANGEBYSCORE salary -inf 2500 withscores
1) "zhangsan"
2) "500"
3) "xiaohong"
4) "2500"
5) "xiaoming"
6) "2500"
127.0.0.1:6379>
#统计个数
127.0.0.1:6379> zcard salary
(integer) 4

#获取指定区间的成员数量
127.0.0.1:6379> zcount salary 500 3000
(integer) 3

案例思路:set排序,存储班级成绩表,工资表排序
普通消息,1、重要消息 2、带权重进行判断
排行榜应用的实现,

3、三种特殊数据类型

朋友定位,附近的人,打车距离计算
Redis 的 Geo 在Redis3.2 版本就推出了! 这个功能可以推算地理位置的信息,两地之间的距离,方圆几里的人

1、geospatial 地理位置

# geoadd添加地理位置的经纬度
127.0.0.1:6379> geoadd china:city 104.065735,30.659462 chengdu
(error) ERR wrong number of arguments for 'geoadd' command
127.0.0.1:6379> geoadd china:city 104.065735 30.659462 chengdu
(integer) 1
127.0.0.1:6379> geoadd china:city 104.398651 31.127991 deyang
(integer) 1
127.0.0.1:6379> geoadd china:city 106.504962 29.533155 chongqin
(integer) 1
127.0.0.1:6379> geoadd china:city 104.741722 31.46402 mianyang
(integer) 1
127.0.0.1:6379> geoadd china:city 108.948024 34.263161 xian
(integer) 1
127.0.0.1:6379>
# geopos获取指定城市的经纬度
127.0.0.1:6379> GEOPOS china:city chengdu
1) 1) "104.06573742628097534"
   2) "30.65946118872339099"
127.0.0.1:6379>

GEODIST
两人之间的直线距离!
单位:
m 表示单位为米
km 表示单位为干米。
mi 表示单位为英里。
t 表示单位为英尺。

127.0.0.1:6379> GEODIST china:city chengdu deyang km
"61.0362"

在这里插入图片描述
数据接近

georadius 以给定的经纬度为中心,找出某一半径的元素
我附近的人,(获得所有附近的人的地址,定位)通过半径来查询!

# 以经纬度104 30为中心,搜索方圆500公里的城市,但前提是这个城市的经纬度已经添加到了china:city这个key中
127.0.0.1:6379> GEORADIUS china:city 104 30 500 km
1) "chongqin"
2) "chengdu"
3) "deyang"
4) "mianyang"
127.0.0.1:6379> GEORADIUS china:city 104 30 100 km
1) "chengdu"
# 并显示直线距离
127.0.0.1:6379> GEORADIUS china:city 104 30 500 km withdist
1) 1) "chongqin"
   2) "247.3606"
2) 1) "chengdu"
   2) "73.6204"
3) 1) "deyang"
   2) "131.1428"
4) 1) "mianyang"
   2) "177.6069"
#显示被扫描到的经纬度
127.0.0.1:6379> GEORADIUS china:city 104 30 500 km withcoord
1) 1) "chongqin"
   2) 1) "106.50495976209640503"
      2) "29.53315530684997015"
2) 1) "chengdu"
   2) 1) "104.06573742628097534"
      2) "30.65946118872339099"
3) 1) "deyang"
   2) 1) "104.39865320920944214"
      2) "31.12799172142140236"
4) 1) "mianyang"
   2) 1) "104.74172383546829224"
      2) "31.46401970551496419"

#指定显示的梳数量
127.0.0.1:6379> GEORADIUS china:city 104 30 500 km withcoord count 2
1) 1) "chengdu"
   2) 1) "104.06573742628097534"
      2) "30.65946118872339099"
2) 1) "deyang"
   2) 1) "104.39865320920944214"
      2) "31.12799172142140236"

GEORADIUSBYMEMBER

# 找出以chengdu这个元素的经纬度为中心,找出300km以内的元素
127.0.0.1:6379> GEORADIUSBYMEMBER china:city chengdu 300 km
1) "chongqin"
2) "chengdu"
3) "deyang"
4) "mianyang"

2、Hyperloglog

简介
redis2.8.9版本就更新了Hyperloglog数据结构!
Redis Hyperloglog 基数统计算法!
有点:占用的内存是固定,2^64次方,只占用64kb
如:网站的uv访问量统计(一个人访问一个网站多次,但只算一个人)
传统的方式,set保存用户id,然后就可以统计set中的元素数量作为标准判断,这个方式如果保存大量的id,就会比较麻烦,我们真的目的是为了计数,而不是保存用户id;

# 创建第一组元素
127.0.0.1:6379> PFADD mykey a b c d e f g h i
(integer) 1
# 统计基数数量
127.0.0.1:6379> PFCOUNT mykey
(integer) 9
# 创建第二组
127.0.0.1:6379> PFADD mykey1 a b c j k l m n o v
(integer) 1
127.0.0.1:6379> PFCOUNT mykey1
(integer) 10
# 合并mykey和mykey1到mykey2
127.0.0.1:6379> PFMERGE mykey2 mykey mykey1
OK
# 统计合并后的mykey2技术数量,由于会去重,所以abc只会计数一次
127.0.0.1:6379> PFCOUNT mykey2
(integer) 16
127.0.0.1:6379>

如果允许容错,就用hyperloglog
如果不允许容错,就是用set,获取其他。

3、BitMaps(位图)

使用位存储,信息状态只有 0 和 1
Bitmap是一串连续的2进制数字(0或1),每一位所在的位置为偏移(offset),在bitmap上可执行AND,OR,XOR,NOT以及其它位操作。

应用场景
签到统计、状态统计

命令描述
setbit key offset value为指定key的offset位设置值
getbit key offset获取offset位的值
bitcount key [start end]统计字符串被设置为1的bit数,也可以指定统计范围按字节
bitop operration destkey key[key…]对一个或多个保存二进制位的字符串 key 进行位元操作,并将结果保存到 destkey 上。
BITPOS key bit [start] [end]返回字符串里面第一个被设置为1或者0的bit位。start和end只能按字节,不能按位
127.0.0.1:6379> setbit sign 0 1 # 设置sign的第0位为 1 
(integer) 0
127.0.0.1:6379> setbit sign 2 1 # 设置sign的第2位为 1  不设置默认 是0
(integer) 0
127.0.0.1:6379> setbit sign 3 1
(integer) 0
127.0.0.1:6379> setbit sign 5 1
(integer) 0
127.0.0.1:6379> type sign
string

127.0.0.1:6379> getbit sign 2 # 获取第2位的数值
(integer) 1
127.0.0.1:6379> getbit sign 3
(integer) 1
127.0.0.1:6379> getbit sign 4 # 未设置默认是0
(integer) 0

127.0.0.1:6379> BITCOUNT sign # 统计sign中为1的位数
(integer) 4

bitmaps的底层

这样设置以后你能get到的值是:\xA2\x80,所以bitmaps是一串从左到右的二进制串

4、事务

Redis的单条命令是保证原子性的,但是redis事务不能保证原子性
Redis事务本质:一组命令的集合。
事务中每条命令都会被序列化,执行过程中按顺序执行,不允许其他命令进行干扰。

  • 一次性
  • 顺序性
  • 排他性

Redis事务没有隔离级别的概念
Redis单条命令是保证原子性的,但是事务不保证原子性!

1、Redis事务操作过程

  • 开启事务(multi)
  • 命令入队
  • 执行事务(exec)
    所以事务中的命令在加入时都没有被执行,直到提交时才会开始执行(Exec)一次性完成。
127.0.0.1:6379> multi # 开启事务
OK
127.0.0.1:6379> set k1 v1 # 命令入队
QUEUED
127.0.0.1:6379> set k2 v2 # ..
QUEUED
127.0.0.1:6379> get k1
QUEUED
127.0.0.1:6379> set k3 v3
QUEUED
127.0.0.1:6379> keys *
QUEUED
127.0.0.1:6379> exec # 事务执行
1) OK
2) OK
3) "v1"
4) OK
5) 1) "k3"
   2) "k2"
   3) "k1"

2、取消事务(discurd)

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> DISCARD # 放弃事务
OK
127.0.0.1:6379> EXEC 
(error) ERR EXEC without MULTI # 当前未开启事务
127.0.0.1:6379> get k1 # 被放弃事务中命令并未执行
(nil)

3、事务错误

代码语法错误(编译时异常)所有的命令都不执行

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> error k1 # 这是一条语法错误命令
(error) ERR unknown command `error`, with args beginning with: `k1`, # 会报错但是不影响后续命令入队 
127.0.0.1:6379> get k2
QUEUED
127.0.0.1:6379> EXEC
(error) EXECABORT Transaction discarded because of previous errors. # 执行报错
127.0.0.1:6379> get k1 
(nil) # 其他命令并没有被执行

**代码逻辑错误 (运行时异常) 其他命令可以正常执行 ** >>> 所以不保证事务原子性

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> INCR k1 # 这条命令逻辑错误(对字符串进行增量)
QUEUED
127.0.0.1:6379> get k2
QUEUED
127.0.0.1:6379> exec
1) OK
2) OK
3) (error) ERR value is not an integer or out of range # 运行时报错
4) "v2" # 其他命令正常执行
# 虽然中间有一条命令报错了,但是后面的指令依旧正常执行成功了。
# 所以说Redis单条指令保证原子性,但是Redis事务不能保证原子性。

五、监控

悲观锁:

  • 很悲观,认为什么时候都会出现问题,无论做什么都会加锁
    乐观锁:
  • 很乐观,认为什么时候都不会出现问题,所以不会上锁!更新数据的时候去判断一下,在此期间是否有人修改过这个数据
  • 获取version
  • 更新的时候比较version

使用watch key监控指定数据,相当于乐观锁加锁。

正常执行

127.0.0.1:6379> set money 100 # 设置余额:100
OK
127.0.0.1:6379> set use 0 # 支出使用:0
OK
127.0.0.1:6379> watch money # 监视money (上锁)
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> DECRBY money 20
QUEUED
127.0.0.1:6379> INCRBY use 20
QUEUED
127.0.0.1:6379> exec # 监视值没有被中途修改,事务正常执行
1) (integer) 80
2) (integer) 20

测试多线程修改值,使用watch可以当做redis的乐观锁操作(相当于getversion)

我们启动另外一个客户端模拟插队线程。

线程1:

127.0.0.1:6379> watch money # money上锁
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> DECRBY money 20
QUEUED
127.0.0.1:6379> INCRBY use 20
QUEUED
127.0.0.1:6379> 	# 此时事务并没有执行

模拟线程插队,线程2:

127.0.0.1:6379> INCRBY money 500 # 修改了线程一中监视的money
(integer) 600

回到线程1,执行事务:

127.0.0.1:6379> EXEC # 执行之前,另一个线程修改了我们的值,这个时候就会导致事务执行失败
(nil) # 没有结果,说明事务执行失败

127.0.0.1:6379> get money # 线程2 修改生效
"600"
127.0.0.1:6379> get use # 线程1事务执行失败,数值没有被修改
"0"

解锁获取最新值,然后再加锁进行事务。
unwatch进行解锁。

注意:每次提交执行exec后都会自动释放锁,不管是否成功

六、Jedis

使用Java来操作Redis,Jedis是Redis官方推荐使用的Java连接redis的客户端。

1、测试

1、导入依赖

<!-- https://mvnrepository.com/artifact/redis.clients/jedis -->
<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>4.2.3</version>
</dependency>

<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>fastjson</artifactId>
    <version>2.0.20</version>
</dependency>

<!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-simple -->
<dependency>
    <groupId>org.slf4j</groupId>
    <artifactId>slf4j-nop</artifactId>
    <version>1.7.2</version>
</dependency>

2、编码测试:

  • 连接数据库
  • 操作命令
  • 断开连接
    修改redis配置文件,修改redis的主机ip,关闭redis的保护模式,开启centos防火墙6379端口,测试可以直接关闭防火墙。 在这里插入图片描述
    开启centos防火墙允许通过的端口或者关闭防火墙,略:
    java连接测试
    package com.jjl;
    
    import redis.clients.jedis.Jedis;
    
    public class TestPing {
        public static void main(String[] args) {
            // 1、new jedis对象
            Jedis jedis = new Jedis("192.168.81.128", 6379);
            //jedis 所有的命令就是我们之前学习的所有命令
            System.out.println(jedis.ping());
        }
    }
    
    在这里插入图片描述

2、Jedis操作事务

package com.jjl;

import netscape.javascript.JSObject;
import org.json.JSONObject;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.Transaction;

public class TestTX {
    public static void main(String[] args) {
        Jedis jedis = new Jedis("192.168.81.128", 6379);
        jedis.flushDB();//清空数据库
        JSONObject jsonObject = new JSONObject();
        jsonObject.put("hello","word");
        jsonObject.put("name","jjl");

        //开启事务
        Transaction multi = jedis.multi();
        String result = jsonObject.toString();
        
        try{
            multi.set("user1",result);
            multi.set("user2",result);
            int i=1/0; //代码抛出异常事务,执行失败
            multi.exec();
        }catch (Exception e) {
            multi.discard();//放弃事务
            e.printStackTrace();
        }finally {
            System.out.println(jedis.get("user1"));
            System.out.println(jedis.get("user2"));
            jedis.close();//关闭连接
        }
    }
}

在这里插入图片描述

七、springboot整合

  • springboot操作数据:spring-data jpa jdbc mongodb redis
  • springdata 也是和springboot齐名的项目
  • 说明: 在 SpringBoot2.x 之后,原来使用的jedis 替换为了 lettuce?
  • jedis: 采用的直连,多个线理换作的话,是不安全的,如果想要避免不安全的,使用jedis pool 连接池 ! BIO模式
  • lettuce:采用netty,实例可以再多个线理中进行共享,不存在线程不安金的情况! 可以减少钱程数据了,更像 Nlo 模式

1、整合测试

1、导入依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

2、编写properties

spring.redis.host=192.168.81.128
spring.redis.port=6379

3、测试

package com.jjl;

import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisTemplate;

@SpringBootTest
class Redis02SpringbootApplicationTests {

    @Autowired
    private RedisTemplate redisTemplate;

    @Test
    void contextLoads() {
        //redisTemlate 操作不同的数据类型
        //opsForValue 操作字符串
        //opsForList
        //opsForhash
        //opsForzset
        //opsForGeo
        //opsForHyperLoglog

        //除了基本的操作,我们常用的方法都可以直接redistemplate操作

        //获取连接
        /*RedisConnection connection = redisTemplate.getConnectionFactory().getConnection();
        connection.flushAll();
        connection.flushDb();*/

        redisTemplate.opsForValue().set("mykey","jjl");
        System.out.println(redisTemplate.opsForValue().get("mykey"));
    }

}

在这里插入图片描述

2、自定义RedisTemplate

见笔记

八、Redis配置文件详解


默认的单位
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
对大小写不敏感
# units are case insensitive so 1GB 1Gb 1gB are all the same.

################################## INCLUDES ###################################

可以配置多个配置文件
# include /path/to/local.conf
# include /path/to/other.conf
# include /path/to/fragments/*.conf
#

################################## NETWORK #####################################

绑定的IP
bind 127.0.0.1 -::1

是否为保护模式
protected-mode yes

# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
端口设置
port 6379

################################# GENERAL #####################################
# When Redis is supervised by upstart or systemd, this parameter has no impact.
以守护进程的方式开启,默认是no(是否以后台方式开启)
daemonize yes

如果以后台方式运行,就需要指定一个pid进程文件
pidfile /var/run/redis_6379.pid

# Specify the server verbosity level.
# This can be one of:
一般用于开发或测试
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
生产环境使用
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
日志级别
loglevel notice

# Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
日志的文件生成名
logfile ""

# dbid is a number between 0 and 'databases'-1
数据库的数量,默认是16个数据库
databases 16

# However it is possible to force the pre-4.0 behavior and always show a
# ASCII art logo in startup logs by setting the following option to yes.
是否总是显示redis log
always-show-logo no


################################ SNAPSHOTTING  ################################

# Save the DB to disk.
#
快照:
在规定的时间内,执行了多少次操作,则会持久化到文件

redis是内存数据库,如果没有持久化,那么就会断电丢失

900S内,如果至少有1个key进行了修改,我们及进行持久化操作
save 900 1
300s内,如果有至少10个key操作,我们就进行持久化操作
save 300 10
# save ""

# permissions, and so forth.

持久化如果出错,是否还需要继续工作,默认开启
stop-writes-on-bgsave-error yes
# the dataset will likely be bigger if you have compressible values or keys.
是否压缩rdb文件,需要消耗cpu资源
rdbcompression yes

保存rdb文件时进行校验。
rdbchecksum yes

# Note that you must specify a directory here, not a file name.
rdb的文件保存目录
dir ./

################################## SECURITY ###################################
# command, these will cause requirepass to be ignored.
#
默认密码为空
# requirepass foobared
设置密码
requirepass 123456

#########客户端设置密码################
设置密码
127.0.0.1:6379> CONFIG set requirepass "123456"
OK
获取密码
127.0.0.1:6379> CONFIG get requirepass
1) "requirepass"
2) "123456"
127.0.0.1:6379> exit
[root@localhost bin]# redis-cli -p 6379
未验证密码时,获取密码失败
127.0.0.1:6379> CONFIG get requirepass
(error) NOAUTH Authentication required.
进入redis时输入密码
127.0.0.1:6379> auth 123456
OK
127.0.0.1:6379> CONFIG get requirepass
1) "requirepass"
2) "123456"
#######################################

################################### CLIENTS ####################################

客户端的最大连接数量
# maxclients 10000

############################## MEMORY MANAGEMENT ################################

# output buffers (but this is not needed if the policy is 'noeviction').
#
最大内存容量
# maxmemory <bytes>
# The default is:
#
内存到达上限时的处理策略
# maxmemory-policy noeviction
##########六种处理策略解析#############
1、volatile-1ru:只对设置了过期时间的key进行LRU(默认值)
2、a11keys-1ru :删除1ru算法的key
3、volatile-random:随机删除即将过期key
4、a11keys-random:随机删除
5、volatile-tt1 :删除即将过期的
6、noeviction :永不过期,返回错误
#######################################

############################## APPEND ONLY MODE ###############################
# Please check https://redis.io/topics/persistence for more information.
默认时不开启aof模式,默认使用rdb方式持久化,在大部分所有的情况下,rdb完全够用
appendonly no

# The base name of the append only file.
# - appendonly.aof.manifest as a manifest file.
持久化文件的名字
appendfilename "appendonly.aof"

# For convenience, Redis stores all persistent append-only files in a dedicated
# If unsure, use "everysec".

# appendfsync always 每次修改都会同步,消耗性能
appendfsync everysec 每秒执行一次同步,可能会丢失这1s的数据
# appendfsync no 不执行同步,这个时候操作系统自己同步数据,速度最快

九、Redis持久化

Redis 是内存数据,如果不将内存中的数据库状态保存到磁盘,那么一旦服务器进程退出,服务器中的数据库状态也会消失。所
以 Redis 提供了持久化功能 !

RDB(redis datebase)

在这里插入图片描述
在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里。
Redis会单独创建 ( fork)一个子进程来进行持久化,会先将数据写入到一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。整个过程中,主进程是不进行任何10操作的。这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢
失。我们默认的就是RDB,一般情况下不需要修改这个配置!

rdb保存的文件是 dump.rdb在这里插入图片描述
在这里插入图片描述
触发机制
1、save的规则满足条件的情况下,会自动触发rdb规则
2、执行flushall命令,也会触发我们的rdb规则
3、推出redis,也会产生rdb文件
备份就会自动生产dump.rdb
在这里插入图片描述

恢复rdb文件
1、只需要将rdb文件放在redis启动目录下,reids启动时会自动恢复里面的数据
2、查看启动目录
在这里插入图片描述

reids的rdb的优缺点
优点:
1、适合大规模的数据恢复!
2、对数据的完整性要求不高!
缺点:
1、需要一定时间间隔进行操作,如果reids意外宕机了,最后一个修改的数据就没了
2、fork进程的时候,会占用一定的内存空间
3、dump.rdb文件一旦丢失,或者被误删除,则无法恢复数据,生产环境建议备份

十、AOF(Append Only File)

将我们的所有命令都记录下来,history,恢复的时候就把这个记录全部在执行一编。

以日志的形式来记录每个写操作,将Redis执行过的所有指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作

Aof保存的是 appendonly.aof 文件
redis配置文件中默认是不开启的,需要手动进行配置,只需要手动开启即可在这里插入图片描述
重启redis之后
在这里插入图片描述
在执行一些命令之后
在这里插入图片描述

aof文件修复
如果aof文件有错误,这个时候redis是启动不了的,
reids提供了aof文件修复工具

模拟aof文件被损坏
此时故意往aof文件中添加一些redis不认识的字符串

[root@localhost bin]# vim appendonlydir/appendonly.aof.1.incr.aof
在这里插入图片描述

#关闭redis进程
[root@localhost bin]# kill -9 35239

[root@localhost bin]# ps -aux | grep reids
root      48254  0.0  0.0 112824   984 pts/1    S+   17:25   0:00 grep --color=auto reids

#启动redis
[root@localhost bin]# redis-server redis.conf
#发现并没有启动成功
[root@localhost bin]# ps -aux | grep redis
root      48418  0.0  0.0 112824   984 pts/1    S+   17:26   0:00 grep --color=auto redis
#运行aof修复文件
[root@localhost bin]# redis-check-aof --fix appendonlydir/appendonly.aof.1.incr.aof
Start checking Old-Style AOF
AOF appendonlydir/appendonly.aof.1.incr.aof format error
AOF analyzed: filename=appendonlydir/appendonly.aof.1.incr.aof, size=130, ok_up_to=110, ok_up_to_line=27, diff=20
This will shrink the AOF appendonlydir/appendonly.aof.1.incr.aof from 130 bytes, with 20 bytes, to 110 bytes
Continue? [y/N]: y
Successfully truncated AOF appendonlydir/appendonly.aof.1.incr.aof

#再次启动
[root@localhost bin]# redis-server redis.conf
#启动成功
[root@localhost bin]# ps -aux | grep redis
root      48745  0.6  0.1 163148  3336 ?        Ssl  17:27   0:00 redis-server 127.0.0.1:6379
root      48769  0.0  0.0 112824   988 pts/1    R+   17:27   0:00 grep --color=auto redis

查看修复后的aof文件,发现我们刚才添加的字符串没有了
在这里插入图片描述
重写机制
在这里插入图片描述
如果aof文件大于64m,那么fork会开启一个新的进程,将文件进行重写

aof的优点和缺点
有点:

  • 每一次修改都同步,文件完整性更加好
  • 默认每秒同步一次,可能会丢失一秒的数据
  • 从不同步,效率最高

缺点:

  • 相对于数据文件来说,aof远远大于rdb,修复的速度也比rdb慢
  • aof运行效率也比较慢,redis默认的配置是rdb,而不是aof

十一、Redis发布订阅

Redis 发布订阅(pub/sub)是一种消息通信模式: 发送者(pub)发送消息,订阅者(sub)接收消息。微信、微博、关注系统!
Redis 客户端可以订阅任意数量的频道。

测试

订阅端:

[root@localhost bin]# redis-cli -p 6379
127.0.0.1:6379> SUBSCRIBE jjl #订阅一个频道 jjl
Reading messages... (press Ctrl-C to quit)
1) "subscribe"
2) "jjl"
3) (integer) 1
#等待读取推送的消息
1) "message" #消息
2) "jjl" #消息来自那个频道
3) "hello,jjl" #消息的内容
1) "message"
2) "jjl"
3) "hello,redis"

发送端:

[root@localhost bin]# redis-cli -p 6379
127.0.0.1:6379> PUBLISH jjl "hello,jjl" #发送者发布消息到jjl频道
(integer) 1
127.0.0.1:6379> PUBLISH jjl "hello,redis"
(integer) 1
127.0.0.1:6379>

使用场景
1、实时消息系统
2、事实聊天!(频道当做聊天室,将消息回显给所有人)
3、订阅,关注系统都是可以的

十二、主从复制

概念
主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master/leader),后者称为从节点(slave/follower); 数据的复制是单向的,只能由主节点到从节点。Master以写为主,Slave 以读为主
默认情况下,每台Redis服务器都是主节点;
且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点
主从复制的作用主要包括:
1、数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据余方式
2、故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余
3、负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大
大提高Redis服务器的并发量。
4、高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础

一般来说,要将Redis运用于工程项目中,只使用一台Redis是万万不能的,原因如下:
1、从结构上,单个Redis服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较大
2、从容量上,单个Redis服务器内存容量有限,就算一台Redis服务器内存容量为256G,也不能将所有内存用作Redis存储内存般来说,单台Redis最大使用内存不应该超过20G
电商网站上的商品,一般都是一次上传,无数次浏览的,说专业点也就是”多读少写”

1、环境配置

只配置从机

查看主机信息
127.0.0.1:6379> info replication
# Replication
role:master
connected_slaves:0
master_failover_state:no-failover
master_replid:071b25a916de273dce5f58cff0a9b78e09baf066
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
127.0.0.1:6379>

复制三个配置文件,然后修改以下内容

  • port 6381
  • pidfile /var/run/redis_6381.pid
  • logfile “6381.log”
  • dbfilename dump6381.rdb

修改完毕之后启动三个服务
在这里插入图片描述

2、一主二从

默认都是主节点,只需要配置从节点就好

配置从机
127.0.0.1:6380> SLAVEOF 127.0.0.1 6379 #SLAVEOF 主节点IP 主节点端口
OK
127.0.0.1:6380> info replication
# Replication
role:slave #已自动变为从机
master_host:127.0.0.1 #主节点的额ip
master_port:6379 # 主节点的端口
master_link_status:down
master_last_io_seconds_ago:-1
master_sync_in_progress:0
slave_read_repl_offset:0
slave_repl_offset:0
master_link_down_since_seconds:-1
slave_priority:100
slave_read_only:1
replica_announced:1
connected_slaves:0
master_failover_state:no-failover
master_replid:0b226a5209804aa63b0b6880093f0d40214d46fb
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:0
second_repl_offset:-1
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
查看主节点信息
127.0.0.1:6379> info replication
# Replication
role:master
# 从机数量
connected_slaves:2
# 第一个从机:ip,端口,当前状态=活跃
slave0:ip=127.0.0.1,port=6380,state=online,offset=322,lag=1
slave1:ip=127.0.0.1,port=6381,state=online,offset=322,lag=0
master_failover_state:no-failover
master_replid:cba9229e2e4312d6409b9ca779c9c20b86a492de
master_replid2:0000000000000000000000000000000000000000
master_repl_offset:322
second_repl_offset:-1
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:322

也可以通过从机的配置文件添加主节点的IP端口
在这里插入图片描述
真实的主从配置因该在配置文件中配置,这样的话是永久的。

细节
主节点可以写,从节点不能写,只能读。主机中的所有信息和数据,都会自动被从机保存

  • 主机才能写,从机只能读
  • 主机写入k1
    在这里插入图片描述
  • 在从机可以读取主机的k1,但是写入k2时报错
    在这里插入图片描述
  • 当主机断开连接时(主机宕机了),从机依旧是连接主机的,但是无法进行写的操作了,当主机重新连接时,从机已经能自动与主机获取连接,获取到主机的内容。
  • 如果从机是使用命令行配置的主机IP和端口,那启动从机之后,从机就会自动变成主机,就不再属于之前的主从复制中了,但只要便会从机之后,就会马上获取到主机中的值。

从机复制原理
slave 启动成功连接到 master 后会发送一个sync同步命令
Master 接到命令,启动后台的存盘进程,同时收集所有接收到的用于修改数据集命令,在后台进程执行完毕之后,master将传送整个数据文件到slave,并完成一次完全同步。
全量复制:而slave服务在接收到数据库文件数据后,将其存盘并加载到内存中
增量复制:Master 继续将新的所有收集到的修改命令依次传给slave,完成同步
但是只要是重新连接master,一次完全同步(全量复制)将被自动执行。

层层连接模式
将从机80的主机设置为79,将从机81的主机设置为80
80既是从机也是81的主机
这种模式下:

  • 主机79的数据会依次复制到80-81中去
  • 但80依然是从机,依然无法进行写操作
  • 如果79主机断开了,80想充当主机,就需要手动配置
    127.0.0.1:6380> set k4 v4
    (error) READONLY You can't write against a read only replica.
    127.0.0.1:6380> info replication
    # Replication
    role:slave
    master_host:127.0.0.1
    master_port:6379
    master_link_status:down
    master_last_io_seconds_ago:-1
    master_sync_in_progress:0
    slave_read_repl_offset:5708
    slave_repl_offset:5708
    master_link_down_since_seconds:14
    slave_priority:100
    slave_read_only:1
    replica_announced:1
    connected_slaves:1
    slave0:ip=127.0.0.1,port=6381,state=online,offset=5708,lag=1
    master_failover_state:no-failover
    master_replid:cba9229e2e4312d6409b9ca779c9c20b86a492de
    master_replid2:0000000000000000000000000000000000000000
    master_repl_offset:5708
    second_repl_offset:-1
    repl_backlog_active:1
    repl_backlog_size:1048576
    repl_backlog_first_byte_offset:1
    repl_backlog_histlen:5708
    手动修改为主机
    127.0.0.1:6380> SLAVEOF no one
    OK
    127.0.0.1:6380> info replication
    # Replication
    role:master
    connected_slaves:1
    slave0:ip=127.0.0.1,port=6381,state=online,offset=5708,lag=1
    master_failover_state:no-failover
    master_replid:98b280a8ad4be548ba8a0e4f55571184c5f68f77
    master_replid2:cba9229e2e4312d6409b9ca779c9c20b86a492de
    master_repl_offset:5708
    second_repl_offset:5709
    repl_backlog_active:1
    repl_backlog_size:1048576
    repl_backlog_first_byte_offset:1
    repl_backlog_histlen:5708
    
    
  • 如果79主机重新获取到连接了,80也需要重新手动将其配置为从机。

十三、哨兵模式

当主机宕机之后,自动将从机变为主机
哨兵模式是一种特殊的模式,首先redis提供了哨兵的命令,哨兵是一个独立的进程,作为进程,它会独立的额运行。
通过发送命令过来,等待redis服务器响应,从而监控运行的多个redis实例
在这里插入图片描述
这里的哨兵有两个作用

  • 通过发送命令,让redis服务器返回监控其运行状态,包括主服务器和从服务器
  • 当哨兵检测到master宕机,会自动将slave切换到master,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换主机。

但以上的图像为单机哨兵,为防止哨兵宕机,所以有了下面的模式,多个哨兵进行监控,各个哨兵之间还会进行监控,这样就形成了多哨兵模式
在这里插入图片描述
假设主服务器宕机,哨兵1先检测到这个结果,系统并不会马上进行failover过程,仅仅是哨兵1主观的认为主服务器不可用,这个现象成为主观下线。当后面的哨兵也检测到主服务器不可用,并且数量达到一定值时,那么哨兵之间就会进行一次投票,投票的结果由一个哨兵发起,进行failover[故障转移]操作。切换成功后,就会通过发布订阅模式,让各个哨兵把自己监控的从服务器实现切换主机,这个过程称为客观下线

测试
1、新建哨兵模式配置文件

[root@localhost bin]# cat sentinel.conf
# sentinel monitor 定义名称  要监控的ip 端口 1(表示当前宕机之后,自动选择其他从节点作为主节点)
sentinel monitor myredis 127.0.0.1 6380 1

2、启动哨兵模式

[root@localhost bin]# redis-sentinel sentinel.conf
60688:X 06 Dec 2022 14:34:49.184 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
60688:X 06 Dec 2022 14:34:49.184 # Redis version=7.0.5, bits=64, commit=00000000, modified=0, pid=60688, just started
60688:X 06 Dec 2022 14:34:49.184 # Configuration loaded
60688:X 06 Dec 2022 14:34:49.185 * Increased maximum number of open files to 10032 (it was originally set to 1024).
60688:X 06 Dec 2022 14:34:49.185 * monotonic clock: POSIX clock_gettime
                _._
           _.-``__ ''-._
      _.-``    `.  `_.  ''-._           Redis 7.0.5 (00000000/0) 64 bit
  .-`` .-```.  ```\/    _.,_ ''-._
 (    '      ,       .-`  | `,    )     Running in sentinel mode
 |`-._`-...-` __...-.``-._|'` _.-'|     Port: 26379
 |    `-._   `._    /     _.-'    |     PID: 60688
  `-._    `-._  `-./  _.-'    _.-'
 |`-._`-._    `-.__.-'    _.-'_.-'|
 |    `-._`-._        _.-'_.-'    |           https://redis.io
  `-._    `-._`-.__.-'_.-'    _.-'
 |`-._`-._    `-.__.-'    _.-'_.-'|
 |    `-._`-._        _.-'_.-'    |
  `-._    `-._`-.__.-'_.-'    _.-'
      `-._    `-.__.-'    _.-'
          `-._        _.-'
              `-.__.-'

60688:X 06 Dec 2022 14:34:49.188 # WARNING: The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128.
60688:X 06 Dec 2022 14:34:49.192 * Sentinel new configuration saved on disk
60688:X 06 Dec 2022 14:34:49.192 # Sentinel ID is d2ed55c7548cb14d6c139e1efc2d6ee4432886f2
60688:X 06 Dec 2022 14:34:49.192 # +monitor master myredis 127.0.0.1 6379 quorum 1
60688:X 06 Dec 2022 14:34:49.193 * +slave slave 127.0.0.1:6380 127.0.0.1 6380 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:34:49.195 * Sentinel new configuration saved on disk
60688:X 06 Dec 2022 14:34:49.195 * +slave slave 127.0.0.1:6381 127.0.0.1 6381 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:34:49.197 * Sentinel new configuration saved on disk

3、模拟主节点断开
如果哨兵检查到故障,会输出类似以下的日志,并切换主节点

60688:X 06 Dec 2022 14:38:35.526 # +new-epoch 1
60688:X 06 Dec 2022 14:38:35.526 # +try-failover master myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:35.531 * Sentinel new configuration saved on disk
60688:X 06 Dec 2022 14:38:35.531 # +vote-for-leader d2ed55c7548cb14d6c139e1efc2d6ee4432886f2 1
60688:X 06 Dec 2022 14:38:35.531 # +elected-leader master myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:35.531 # +failover-state-select-slave master myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:35.633 # +selected-slave slave 127.0.0.1:6380 127.0.0.1 6380 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:35.633 * +failover-state-send-slaveof-noone slave 127.0.0.1:6380 127.0.0.1 6380 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:35.706 * +failover-state-wait-promotion slave 127.0.0.1:6380 127.0.0.1 6380 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:36.046 * Sentinel new configuration saved on disk
60688:X 06 Dec 2022 14:38:36.046 # +promoted-slave slave 127.0.0.1:6380 127.0.0.1 6380 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:36.046 # +failover-state-reconf-slaves master myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:36.102 * +slave-reconf-sent slave 127.0.0.1:6381 127.0.0.1 6381 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:36.801 * +slave-reconf-inprog slave 127.0.0.1:6381 127.0.0.1 6381 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:36.801 * +slave-reconf-done slave 127.0.0.1:6381 127.0.0.1 6381 @ myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:36.894 # +failover-end master myredis 127.0.0.1 6379
60688:X 06 Dec 2022 14:38:36.894 # +switch-master myredis 127.0.0.1 6379 127.0.0.1 6380
60688:X 06 Dec 2022 14:38:36.894 * +slave slave 127.0.0.1:6381 127.0.0.1 6381 @ myredis 127.0.0.1 6380
60688:X 06 Dec 2022 14:38:36.894 * +slave slave 127.0.0.1:6379 127.0.0.1 6379 @ myredis 127.0.0.1 6380
60688:X 06 Dec 2022 14:38:36.897 * Sentinel new configuration saved on disk
60688:X 06 Dec 2022 14:39:06.962 # +sdown slave 127.0.0.1:6379 127.0.0.1 6379 @ myredis 127.0.0.1 6380

这里主机切换到了6380

127.0.0.1:6380>> info replication
# Replication
role:master
connected_slaves:1
slave0:ip=127.0.0.1,port=6381,state=online,offset=17086,lag=0
master_failover_state:no-failover
master_replid:f4a6ee000fb93cae38cc6786fd47bb6e92c520d0
master_replid2:dced6fd28ea30124ed91ff7060273481253cd6e4
master_repl_offset:17218
second_repl_offset:15174
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:17218

4、如果主机被哨兵切换之后,原来的主机又重新获取连接,那么哨兵自动识别到,并将原来的主机变成从机
在这里插入图片描述

127.0.0.1:6380> info replication
# Replication
role:master
connected_slaves:2
slave0:ip=127.0.0.1,port=6381,state=online,offset=63337,lag=0
slave1:ip=127.0.0.1,port=6379,state=online,offset=63337,lag=1
master_failover_state:no-failover
master_replid:f4a6ee000fb93cae38cc6786fd47bb6e92c520d0
master_replid2:dced6fd28ea30124ed91ff7060273481253cd6e4
master_repl_offset:63337
second_repl_offset:15174
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:1
repl_backlog_histlen:63337

哨兵模式的优缺点
优点:

  • 哨兵集群,基于主从复制模式,所有的主从配置优点,他都有
  • 主从可以切换,故障可以转移,系统的可用性就会更好
  • 哨兵模式就是主从模式的升级,手动到自动

缺点:

  • redis不好在线扩容,集群容量一旦到达上限,在线扩容就十分麻烦
  • 实现哨兵模式的配置其实很麻烦,里面又很多配置

哨兵模式的全部配置

# Example sentinel.conf
 
# 哨兵sentinel实例运行的端口 默认26379
port 26379
 
# 哨兵sentinel的工作目录
dir /tmp
 
# 哨兵sentinel监控的redis主节点的 ip port 
# master-name  可以自己命名的主节点名字 只能由字母A-z、数字0-9 、这三个字符".-_"组成。
# quorum 当这些quorum个数sentinel哨兵认为master主节点失联 那么这时 客观上认为主节点失联了
# sentinel monitor <master-name> <ip> <redis-port> <quorum>
sentinel monitor mymaster 127.0.0.1 6379 1
 
# 当在Redis实例中开启了requirepass foobared 授权密码 这样所有连接Redis实例的客户端都要提供密码
# 设置哨兵sentinel 连接主从的密码 注意必须为主从设置一样的验证密码
# sentinel auth-pass <master-name> <password>
sentinel auth-pass mymaster MySUPER--secret-0123passw0rd
 
 
# 指定多少毫秒之后 主节点没有应答哨兵sentinel 此时 哨兵主观上认为主节点下线 默认30秒
# sentinel down-after-milliseconds <master-name> <milliseconds>
sentinel down-after-milliseconds mymaster 30000
 
# 这个配置项指定了在发生failover主备切换时最多可以有多少个slave同时对新的master进行 同步,
这个数字越小,完成failover所需的时间就越长,
但是如果这个数字越大,就意味着越 多的slave因为replication而不可用。
可以通过将这个值设为 1 来保证每次只有一个slave 处于不能处理命令请求的状态。
# sentinel parallel-syncs <master-name> <numslaves>
sentinel parallel-syncs mymaster 1
 
 
 
# 故障转移的超时时间 failover-timeout 可以用在以下这些方面: 
#1. 同一个sentinel对同一个master两次failover之间的间隔时间。
#2. 当一个slave从一个错误的master那里同步数据开始计算时间。直到slave被纠正为向正确的master那里同步数据时。
#3.当想要取消一个正在进行的failover所需要的时间。  
#4.当进行failover时,配置所有slaves指向新的master所需的最大时间。不过,即使过了这个超时,slaves依然会被正确配置为指向master,但是就不按parallel-syncs所配置的规则来了
# 默认三分钟
# sentinel failover-timeout <master-name> <milliseconds>
sentinel failover-timeout mymaster 180000
 
# SCRIPTS EXECUTION
 
#配置当某一事件发生时所需要执行的脚本,可以通过脚本来通知管理员,例如当系统运行不正常时发邮件通知相关人员。
#对于脚本的运行结果有以下规则:
#若脚本执行后返回1,那么该脚本稍后将会被再次执行,重复次数目前默认为10
#若脚本执行后返回2,或者比2更高的一个返回值,脚本将不会重复执行。
#如果脚本在执行过程中由于收到系统中断信号被终止了,则同返回值为1时的行为相同。
#一个脚本的最大执行时间为60s,如果超过这个时间,脚本将会被一个SIGKILL信号终止,之后重新执行。
 
#通知型脚本:当sentinel有任何警告级别的事件发生时(比如说redis实例的主观失效和客观失效等等),将会去调用这个脚本,
#这时这个脚本应该通过邮件,SMS等方式去通知系统管理员关于系统不正常运行的信息。调用该脚本时,将传给脚本两个参数,
#一个是事件的类型,
#一个是事件的描述。
#如果sentinel.conf配置文件中配置了这个脚本路径,那么必须保证这个脚本存在于这个路径,并且是可执行的,否则sentinel无法正常启动成功。
#通知脚本
# sentinel notification-script <master-name> <script-path>
  sentinel notification-script mymaster /var/redis/notify.sh
 
# 客户端重新配置主节点参数脚本
# 当一个master由于failover而发生改变时,这个脚本将会被调用,通知相关的客户端关于master地址已经发生改变的信息。
# 以下参数将会在调用脚本时传给脚本:
# <master-name> <role> <state> <from-ip> <from-port> <to-ip> <to-port>
# 目前<state>总是“failover”,
# <role>是“leader”或者“observer”中的一个。 
# 参数 from-ip, from-port, to-ip, to-port是用来和旧的master和新的master(即旧的slave)通信的
# 这个脚本应该是通用的,能被多次调用,不是针对性的。
# sentinel client-reconfig-script <master-name> <script-path>
sentinel client-reconfig-script mymaster /var/redis/reconfig.sh


十三、redis缓存穿透和雪崩

1、缓存穿透(查不到数据导致的)

概念:
缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中,于是向持久层数据库查询。发现也没有,于是本次查询失败。当用户很多的时候,缓存都没有命中(秒杀!),于是都去请求了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。

解决方案
布隆过滤器
布降过滤器是一种数据结检,对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的的算间压力
在这里插入图片描述

缓存空对象
当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源;
在这里插入图片描述
但是这种方法会存在两个问题:
1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键;
2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。

2、缓存击穿(量太大,缓存过期)

概念
这里需要注意和缓存击穿的区别,缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一个点进行访问,这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一个洞。
当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新数据,并且回写缓存,会导使数据库瞬间压力过大。

解决方案
设置热点数据永不过期
从缓存层面来看,没有设置过期时间,所以不会出现热点 key 过期后产生的问题。

加互斥锁
分布式锁:使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。

3、缓存雪崩

概念:

缓存雪崩,是指在某一个时间段,缓存集中过期失效。Redis 宕机!
产生雪崩的原因之一,比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一个小时。那么到了凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。

其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然形成的缓存雪崩,一定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。

解决方案
redis高可用
这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis,这样一台挂掉之后其他的还可以继续工作,其实就是搭建的集群。(异地多活 )

限流降级
这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

数据预热
数据加热的含义就是在正式部署之前,我先把可能的数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中。在即将发生大并发访问前手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西红柿炒番茄~^v^~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值