scatter_add()函数通俗理解

本文详细解析PyTorch中的scatter_add()函数,重点在于二维数组操作。通过实例解释如何根据index对self进行累加更新,其中dim参数决定累加维度。当dim==0时,self的第一维根据index的值被更新;当dim==1时,self的第二维根据src的第二维坐标更新。具体例子展示了如何在不同情况下改变self的值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

self [ index[i,j] , j ] += src [ i , j ] # if dim == 0
self [ i , index[i,j] ] += src[ i, j ] # if dim == 1

理解scatter_add()函数,看index就行了,index有多少个,self坐标就会变多少次。
self是一个二维的数组,self[第一维,第二维],dim==0,就是将src对应坐标,对应到 index 坐标里面的值,放置到self的第一维中。
例如src[i,j]对应到index[i,j],假设 index[i,j] ==0,则self[第一维,第二维] 为self[0,j],只改变第一维,第二维的值和src第二维一样。然后self[0,j]的值就会变为 self[0,j]=self[0,j]+src[i,j]
在这里插入图片描述
代码中 self=torch.zeros(3,5), dim=0, index=[0,1,2,0,0], src=torch.ones(2,5)
我们只看 src,当 src[0,0]=1, index[0,0]=0, self[0,0]=self[0,0]+src[0,0]=1。
当src[0,1]=1, index[0,1]=1, self[1,1]=self[1,1]+src[0,1]=1, self的第一维是index的值决定的为1,第二维是src的第二维坐标决定也为1。当index的值没有时,就停止变换,self没有变换过的坐标值就保持不变。

<think>好的,用户想用MATLAB实现NODE-GAM算法,需要一个详细的步骤解释。首先,我需要回忆一下NODE-GAM的基本概念和结构。NODE-GAM是结合了神经网络和广义加性模型的可解释性算法,核心是通过神经网络学习每个特征的加性函数,然后组合这些函数进行预测。这种结构既保持了模型的灵活性,又具备可解释性,类似于GAMs,但通过神经网络增强表达能力。 接下来,我需要考虑如何在MATLAB中搭建这样的模型。MATLAB的深度学习工具箱应该能派上用场,特别是全连接层和自定义训练循环。用户可能对自定义层和损失函数不太熟悉,所以步骤需要详细说明。 第一步是数据预处理,这部分比较常规,包括标准化和划分训练测试集。需要提醒用户注意分类变量的处理,可能需要独热编码,但具体取决于数据情况。 然后是模型结构设计。NODE-GAM需要每个特征单独处理,可能要为每个特征设计一个子网络,然后将输出相加。这里可能需要使用MATLAB的层图(layerGraph)来构建多个并行分支,每个分支对应一个特征。例如,如果有5个特征,就要创建5个独立的全连接层分支,每个处理一个输入,最后相加合并。这一步可能需要详细解释如何创建这样的网络结构,特别是对于不熟悉层图的用户。 接下来是自定义损失函数。NODE-GAM通常使用均方误差,但可能还需要加入正则化项,比如L1或L2正则化,以防止过拟合,并增强可解释性。MATLAB中可以通过自定义训练循环来实现,需要在损失计算中加入正则化项。需要指导用户如何编写自定义训练循环,如何提取网络参数并计算正则化项。 训练配置部分需要设置训练选项,如优化器、学习率、迭代次数等。这里可能需要建议用户使用Adam优化器,并合理设置学习率,同时监控训练过程中的损失变化。 模型解释部分,用户可能需要可视化每个特征的影响,这可以通过提取每个子网络的输出并绘制其与特征值的关系来实现。需要说明如何从训练好的模型中提取各个分支的输出,并生成图表。 可能的挑战包括并行分支的实现、自定义训练循环的编写,以及正则化的正确应用。用户可能遇到维度不匹配的问题,需要确保每个子网络的输入维度正确,且合并时的加法操作正确。此外,MATLAB在自定义层和训练循环方面相对其他框架(如PyTorch)可能不够灵活,可能需要一些变通方法。 最后,生成的相关问题需要覆盖算法原理、可解释性方法、与其他模型的比较、超参数调整、处理高维数据以及MATLAB中的其他可解释模型。这些问题可以帮助用户进一步深入理解NODE-GAM及其应用。</think>### MATLAB实现NODE-GAM算法分步指南 NODE-GAM(Neural Oblivious Decision Ensembles for Generalized Additive Models)是一种结合神经网络可解释性与加性模型结构的算法。其核心数学表达式为: $$f(x) = \sum_{i=1}^d g_i(x_i) + \epsilon$$ 其中$g_i$表示第$i$个特征的非线性变换函数[^1]。 --- #### **步骤1:数据预处理** ```matlab % 加载数据 data = readtable('dataset.csv'); features = data(:,1:end-1); labels = data(:,end); % 标准化处理 [normalized_features, mu, sigma] = zscore(table2array(features)); % 划分训练/测试集 cv = cvpartition(size(data,1), 'HoldOut', 0.3); X_train = normalized_features(cv.training,:); X_test = normalized_features(cv.test,:); ``` --- #### **步骤2:模型结构设计** 使用MATLAB Deep Learning Toolbox构建双通道架构: ```matlab num_features = size(X_train,2); inputs = featureInputLayer(num_features, 'Name', 'input'); % 构建特征子网络 feature_branches = cell(num_features,1); for i = 1:num_features branch = [ fullyConnectedLayer(32, 'Name', ['fc1_' num2str(i)]) reluLayer('Name', ['relu1_' num2str(i)]) fullyConnectedLayer(16, 'Name', ['fc2_' num2str(i)]) ]; feature_branches{i} = branch; end % 合并分支 combined = additionLayer(num_features, 'Name', 'add'); ``` --- #### **步骤3:自定义损失函数** 实现均方误差+正则化项的复合损失: ```matlab function loss = customLoss(Y, T, parameters, lambda) mse = mean((Y-T).^2); l2_penalty = sum(cellfun(@(w) sum(w.^2,'all'), parameters)); loss = mse + lambda*l2_penalty; end ``` --- #### **步骤4:训练配置** ```matlab options = trainingOptions('adam',... 'MaxEpochs',200,... 'MiniBatchSize',64,... 'Plots','training-progress',... 'LearnRateSchedule','piecewise',... 'InitialLearnRate',0.001); ``` --- #### **步骤5:模型解释** 可视化特征贡献: ```matlab function plot_feature_effects(model, X_sample) feature_contributions = cell(num_features,1); for i = 1:num_features submodel = extractSubNetwork(model, ['fc2_' num2str(i)]); feature_contributions{i} = predict(submodel, X_sample(:,i)); end figure; for i = 1:num_features subplot(ceil(sqrt(num_features)),ceil(sqrt(num_features)),i) scatter(X_sample(:,i), feature_contributions{i}) end end ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值