Huggingface模型和数据下载

Huggingface模型和数据下载

import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download meta-llama/Llama-2-7b-chat-hf --local-dir meta-llama/Llama-2-7b-chat-hf')
#下载数据集
os.system('huggingface-cli download --repo-type dataset --resume-download HF上的数据集名称 --local-dir 本地存放路径')
### Hugging Face 平台上的模型数据集资源 #### 访问Hugging Face平台 为了访问Hugging Face平台上丰富的模型数据集资源,用户可以前往官方网址 https://huggingface.co/ 进行浏览[^2]。 #### 浏览Model Hub 在网站主页上,可以通过导航栏中的“Models”选项进入Model Hub页面,在这里可以看到由社区成员上传的各种预训练模型。这些模型涵盖了自然语言处理、计算机视觉等多个领域,并且支持多种框架如PyTorch、TensorFlow等。通过搜索框可以根据特定需求查找合适的模型实例[^1]。 #### 探索Datasets库 对于数据集而言,则可通过点击首页顶部菜单里的“Datasets”,进入到专门的数据集仓库界面。此区域不仅包含了像[Yahoo Answers Topics][yahoo_answers_topics]这样的公开可用集合,还允许个人或团队发布自己的私有数据集供他人研究使用[^3]。 [yahoo_answers_topics]: https://huggingface.co/datasets/yahoo_answers_topics "Yahoo Answers Topics" #### 实际操作示例:加载并查看一个简单的NLP数据集 下面给出了一段Python代码片段用于展示如何利用`datasets`库来获取并初步探索名为`sst2`的情感分析任务所对应的小规模语料: ```python from datasets import load_dataset # 加载 SST-2 数据集 dataset = load_dataset('glue', 'sst2') # 打印前五个样本及其标签含义 print(dataset['train'][0:5]) ``` 这段脚本首先导入必要的工具包,接着调用了`load_dataset()`函数指定要读取的是GLUE benchmark下的SST-2子集;最后选取了训练集中最前面几条记录作为样例行输出以便观察其结构特点[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值