Adversarial Diffusion Distillation
1. Motivation
- 扩散模型中的迭代推理过程需要大量的采样步骤,这目前阻碍了它们的实时应用。
- 生成对抗网络(GANs)有着单步形式和固有速度的特点,但是生成图片质量相比于DMs较差
- 本工作的目标是将扩散模型(DMs)的生成高质量样本的能力与生成对抗网络(GANs)固定的速度结合起来。
2.Contribution
- 引入了ADD,这是一种将预训练的扩散模型转化为高保真、实时图像生成器的方法,仅使用1-4个采样步骤。
• ADD方法采用了对抗训练和分数蒸馏(score-distillation)的组合,我们仔细分析了几种设计选择。
• ADD显著优于强基线方法,如LCM、LCM-XL和单步GAN,并且能够处理复杂的图像构图,同时在仅一个推理步骤中保持高图像真实性。
• 使用四个采样步骤,ADD-XL在5122像素分辨率下优于其教师模型SDXL-Base。
3. Method
- τn=1000\tau_n= 1000τn=1000