Adversarial Diffusion Distillation

本文介绍了一种新型方法AdversarialDiffusionDistillation(ADD),它结合了扩散模型的高质量生成能力和GANs的快速速度,通过对抗训练和分数蒸馏优化,能在1-4步内生成高真实性的图像,且在复杂图像处理上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Adversarial Diffusion Distillation

1. Motivation

  • 扩散模型中的迭代推理过程需要大量的采样步骤,这目前阻碍了它们的实时应用。
  • 生成对抗网络(GANs)有着单步形式和固有速度的特点,但是生成图片质量相比于DMs较差
  • 本工作的目标是将扩散模型(DMs)的生成高质量样本的能力与生成对抗网络(GANs)固定的速度结合起来。

2.Contribution

  • 引入了ADD,这是一种将预训练的扩散模型转化为高保真、实时图像生成器的方法,仅使用1-4个采样步骤。
    • ADD方法采用了对抗训练和分数蒸馏(score-distillation)的组合,我们仔细分析了几种设计选择。
    • ADD显著优于强基线方法,如LCM、LCM-XL和单步GAN,并且能够处理复杂的图像构图,同时在仅一个推理步骤中保持高图像真实性。
    • 使用四个采样步骤,ADD-XL在5122像素分辨率下优于其教师模型SDXL-Base。

3. Method

请添加图片描述

  • τn=1000\tau_n= 1000τn=1000
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值