剖析递归行为和时间复杂度的估算
奠定知识
递归方法查找数组最大值
优化: (L+R)/2 => L+(R-L)>>1 防止L+R溢出且>>运算比除法快
master公式
T(N) = aT(N/b) + O(N^d)
a:子问题规模等量情况下被调用次数
b:子问题规模
d:除去调用子过程之外,剩下的时间复杂度
例子:
T(N) = 2T(N/2) +O(1) a=1,b=2,d=0
PS:只要等子过程规模相同,就可以使用master公式
符合master公式的时间复杂度
归并排序
1、简单递归过程,左边排好序,右边排好序,让其整体有序;让其整体有序的过程使用了外排序方法
2、实质
- 与O( N2 )的算法相比,O( N2 )算法无法使用上一次排序的成果,每次都是重新比较获取结果。
- 提升到O(N*logN)是因为前一次排序的成果都被后一次排序所使用
时间复杂度
- 由master公式 T(N)=2T(N/2)+O(N) 其中logba=d 所以时间复杂度为**O(NlogN)**
- 因为每次merge过程都会创建一个新数组,其长度不超过N,且merge结束即释放,所以额外空间复杂度 O(N)
代码实现
// T(N)=2*T(N/2)+O(N)
public static void process(int[] nums, int l, int r){
if(l==r) return;
int mid=l+((r-l)>>1);
process(nums,l,mid);
process(nums,mid+1,r);
merge(nums,l,mid,r); //O(N)
}