算法之NlogN排序算法

本文详细探讨了两种高效的排序算法——归并排序和快速排序。通过递归行为和时间复杂度的估算,解析了算法的工作原理。归并排序利用master公式分析得到O(NlogN)的时间复杂度,而快速排序通过不断改进,如随机选取基准值,使其在平均情况下的时间复杂度同样达到O(NlogN)。文章还提供了代码实现及复杂度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剖析递归行为和时间复杂度的估算

奠定知识

递归方法查找数组最大值
优化: (L+R)/2 => L+(R-L)>>1 防止L+R溢出且>>运算比除法快

master公式

T(N) = aT(N/b) + O(N^d)
a:子问题规模等量情况下被调用次数
b:子问题规模
d:除去调用子过程之外,剩下的时间复杂度
例子:
在这里插入图片描述 T(N) = 2
T(N/2) +O(1) a=1,b=2,d=0

PS:只要等子过程规模相同,就可以使用master公式

符合master公式的时间复杂度
在这里插入图片描述

归并排序

1、简单递归过程,左边排好序,右边排好序,让其整体有序;让其整体有序的过程使用了外排序方法

2、实质

  • 与O( N2 )的算法相比,O( N2 )算法无法使用上一次排序的成果,每次都是重新比较获取结果。
  • 提升到O(N*logN)是因为前一次排序的成果都被后一次排序所使用

时间复杂度

  • 由master公式 T(N)=2T(N/2)+O(N) 其中logba=d 所以时间复杂度为**O(NlogN)**
  • 因为每次merge过程都会创建一个新数组,其长度不超过N,且merge结束即释放,所以额外空间复杂度 O(N)

代码实现

    //  T(N)=2*T(N/2)+O(N)
    public static void process(int[] nums, int l, int r){
   
   
        if(l==r) return;
        int mid=l+((r-l)>>1);
        process(nums,l,mid);
        process(nums,mid+1,r);
        merge(nums,l,mid,r);    //O(N)
    }

    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值