1、硬币游戏
背景:顾客 参与投币,每次支付一英镑,投十次,正面朝上的次数小于等于6次,则顾客收回押金,净赚一英镑;若大于6次,则货摊主收益押金一英镑。
1.1 计算正面朝上的次数
1.2 贝叶斯方法
颠倒条件,求相对简单的概率。
边缘似然值(P(y[N]))等于先验(已经知道的知识)和似然(观察到的知识)乘积在r的取值范围内的积分。
2、精确的后验
当似然值是二项分布时,β分布是先验的通常选择。这是因为可以用一些代数来精确地计算后验密度。
3、三个场景
3.1 没有先验知识
背景:我们不知道硬币投掷或摊主的信息
选择先验、选择似然、计算后验、使用期望进行预测。
3.2 公平的投币
背景:硬币等可能
最终预测顾客将胜利(公平投币的情况)
3.3 有偏的投币
背景:硬币偏向正面朝上