2020-10-04 机器学习--机器学习的贝叶斯方法(DAY3)

本文探讨了一种涉及硬币投掷的游戏,顾客通过支付押金参与,如果正面朝上的次数少于或等于6次则赢回押金。文章介绍了贝叶斯统计方法,包括边缘似然估计、后验概率的精确计算,以及在不同场景下的应用,如无先验知识、公平硬币和有偏硬币的情况。随着更多数据的积累,先验知识的影响减弱。此外,还讨论了超参数和图模型在处理此类问题中的角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、硬币游戏

背景:顾客 参与投币,每次支付一英镑,投十次,正面朝上的次数小于等于6次,则顾客收回押金,净赚一英镑;若大于6次,则货摊主收益押金一英镑。

1.1 计算正面朝上的次数

1.2 贝叶斯方法

颠倒条件,求相对简单的概率。
边缘似然值(P(y[N]))等于先验(已经知道的知识)和似然(观察到的知识)乘积在r的取值范围内的积分。

2、精确的后验

当似然值是二项分布时,β分布是先验的通常选择。这是因为可以用一些代数来精确地计算后验密度。

3、三个场景

3.1 没有先验知识

背景:我们不知道硬币投掷或摊主的信息

选择先验、选择似然、计算后验、使用期望进行预测。

3.2 公平的投币

背景:硬币等可能

最终预测顾客将胜利(公平投币的情况)

3.3 有偏的投币

背景:硬币偏向正面朝上

预测玩家将会损失很多

3.4 增加更多的数据

当观察的数据越来越多时,在观察之前的先验会变得越来越不重要。

4、边缘似然估计

p® 应改写为p(r|α,β),看做是给定参数 α、β的条件概率密度。

5、超参数

κ可以认为是基于其他随机变量密度的随机变量。

6、图模型

图模型是一个网状图,节点对应于随机变量,边代表变量间的依赖关系。

7 、小结

利用贝叶斯方法完成机器学习任务——把所有参数看作是随机变量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值