EM算法---重要的数据挖掘算法---期望最大化

本文介绍了EM算法在解决高斯混合模型参数推断中的应用,通过实例展示了如何处理数据不完全充分的情况。内容包括EM算法的代码说明、Jensen不等式、最大似然估计以及对问题的解决方法,强调了先验假设对结果的影响,并讨论了EM算法可能只找到局部最大值的局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要内容

在这里插入图片描述
在这里插入图片描述

EM代码说明

在这里插入图片描述
在1000个用户中,有两种服从不同分布的高斯模型。先验假定只有男女两个类别,即一个是男性部分,一个是女性部分,二者进行混合得到所观测到的1000个数据,即称为高斯混合模型。可以用EM算法进行这4个参数的推断。甚至推断这1000个中,有多少个男性,有多少个女性。
在这里插入图片描述
女的样本多一些,均值小,男的样本少一些,但均值大。如下图所示
在这里插入图片描述
因此EM算法在解决数据并不完全充分下的参数求解是可行的。

Jensen不等式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
若是连续型,则求和变为求积分。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最大似然估计


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

考虑如下问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一种欧拉式的说明

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
直到最后一组参数收敛,即这个结果就是所要的。
在这里插入图片描述
在这里插入图片描述
然后做下面:
在这里插入图片描述
之后以上两幅图片不断重复即可,直到收敛为止。
这就是EM算法解决高斯混合模型的最终结论了。

问题解决

1、先验性的假设对于算出的结果产生的影响,有些时候是起决定性的,若真的把男性期望一开始直接给定1米72,女性2米1,则最终实际算出的女性的均值是男性的,男性的均值是女性的。EM算法本身没办法确定这些组分的顺序的。
在这里插入图片描述
2、混合性高斯分布是一种单独的一种分布。
在这里插入图片描述
求出带未观测数据的模型出来,这就必须要先假设。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最终输出就是最优的参数了。即过程:先给一个参数,然后给一个下界函数,对下界函数求极大值,然后到下一个点了,再给下界值,一直找到最优参数即可。那r这个下界函数如何给定呢?可以发现EM算法只能找到局部最大值,没法找到全局最大值。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Q分布任取的,可以取什么呢?
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
沿着坐标上升逐步到达局部最优点。
在这里插入图片描述
在这里插入图片描述

从理论公式推导GMM-高斯混合模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
给定主题,则词是服从多项分布的。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
含有隐变量的问题,往往可以用EM算法,但不是唯一的。
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值