Before Coding
代码随想录
是双指针学习的开端,为什么双指针行?
- Q:双指针在循环中使用的优势和条件
双指针的一个优点是通过对数据进行分析,可以将暴力的复杂度 O ( n 2 ) O(n^2) O(n2)算法化为 O ( n ) O(n) O(n)的方法,本质是两个指针轮流滑动。双指针一般利用的数组中元素的结构,比如从小到大排列的数组,因此在使用双指针时通常需要对数据进行排序。注意:由于排序会影响原来的数组元素下标,故对下标操作的题目不适合。
Let’s Coding
977.有序数组的平方
题目描述
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
题解思路
暴力排序:
最直观的想法,莫过于:每个数平方之后,排个序。
使用sort会帮助我们直接使用 时间复杂度为 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))的方法排序。
双指针法:
这里数组是有序的,因此可以化为O(n)的双指针法。
数组其实是有序的, 只不过负数平方之后可能成为最大数了。
那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。
此时可以考虑双指针法了,i指向起始位置,j指向终止位置。
定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。
这里可以形象的将本算法理解为一个漏斗,优先漏出较大的数。
题解代码
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
int k = A.size() - 1;
vector<int> result(A.size(), 0);
for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素
if (A[i] * A[i] < A[j] * A[j]) {
result[k--] = A[j] * A[j];
j--;
}
else {
result[k--] = A[i] * A[i];
i++;
}
}
return result;
}
};
209.长度最小的子数组
题目描述
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
题解思路
利用双指针构造滑动窗口,使用双指针O(n)的复杂度化简暴力方法。
- Q:什么是滑动窗口
所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
我的代码
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int idx = 0, len_tem = 1, len = nums.size() + 1;
int sum = nums[idx];
while (idx + len_tem - 1 < nums.size()) {
if (sum >= target) {
if (len_tem < len) len = len_tem;
sum -= nums[idx++];
len_tem--;
}
else {
if (idx + (++len_tem) - 1 < nums.size()) sum += nums[idx + len_tem - 1];
else break;
}
}
return (len < nums.size() + 1) ? len : 0;
}
};
代码随想录代码
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX;
int sum = 0; // 滑动窗口数值之和
int i = 0; // 滑动窗口起始位置
int subLength = 0; // 滑动窗口的长度
for (int j = 0; j < nums.size(); j++) {
sum += nums[j];
// 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
while (sum >= s) {
subLength = (j - i + 1); // 取子序列的长度
result = result < subLength ? result : subLength;
sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
复杂度分析
时间复杂度:O(n)
空间复杂度:O(1)
59.螺旋矩阵II
题目描述
题解思路
首先这是一个将一串数字填入表格的题目
只需要掌握什么时候填入转向,朝什么方向转即可
我的代码
定义了四个方向,当我们要填入数字超过了二维数组边界,或者要填的地方已经填过数字了,此时就要转向了
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> Matrix(n, vector<int>(n));
// 定义4个方向
int direction[4][2] = {{0, 1},
{1, 0},
{0, -1},
{-1, 0}};
int i = 1;
int direction_run = 0;
int row = 0, col = -1;
// 如果超过二维数组边界,或者该位置已经填过数字了就要转向
while (i <= n * n) {
if (row + direction[direction_run % 4][0] >= n \
|| col + direction[direction_run % 4][1] >= n \
|| col + direction[direction_run % 4][1] < 0) {
direction_run++;
}
else {
if (Matrix[row + direction[direction_run % 4][0]][col + direction[direction_run % 4][1]] != 0) direction_run++;
row += direction[direction_run % 4][0];
col += direction[direction_run % 4][1];
Matrix[row][col] = i++;
}
}
return Matrix;
}
};
代码随想录代码
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;
j = starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j = starty; j < n - offset; j++) {
res[startx][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i = startx; i < n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}
// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
// offset 控制每一圈里每一条边遍历的长度
offset += 1;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};
Q
Q:双指针在循环中使用的优势和条件
Q:什么是滑动窗口