代码随想录-02|977.有序数组的平方、209.长度最小的子数组、 59.螺旋矩阵II

文章探讨了双指针在编程中的应用,特别是在循环中如何通过双指针优化复杂度,如从O(n^2)降低到O(n),以及在有序数组和滑动窗口问题中的使用实例。讲解了如何利用双指针在有序数组平方和长度最小子数组问题中达到O(n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Before Coding

代码随想录
是双指针学习的开端,为什么双指针行?

  • Q:双指针在循环中使用的优势和条件
    双指针的一个优点是通过对数据进行分析,可以将暴力的复杂度 O ( n 2 ) O(n^2) O(n2)算法化为 O ( n ) O(n) O(n)的方法,本质是两个指针轮流滑动。双指针一般利用的数组中元素的结构,比如从小到大排列的数组,因此在使用双指针时通常需要对数据进行排序。注意:由于排序会影响原来的数组元素下标,故对下标操作的题目不适合。

Let’s Coding

977.有序数组的平方

题目描述

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

题解思路

暴力排序:
最直观的想法,莫过于:每个数平方之后,排个序。

使用sort会帮助我们直接使用 时间复杂度为 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))的方法排序。

双指针法:
这里数组是有序的,因此可以化为O(n)的双指针法。

数组其实是有序的, 只不过负数平方之后可能成为最大数了。

那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。

此时可以考虑双指针法了,i指向起始位置,j指向终止位置。

定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。

这里可以形象的将本算法理解为一个漏斗,优先漏出较大的数。
在这里插入图片描述

在这里插入图片描述

题解代码

class Solution {
public:
    vector<int> sortedSquares(vector<int>& A) {
        int k = A.size() - 1;
        vector<int> result(A.size(), 0);
        for (int i = 0, j = A.size() - 1; i <= j;) { // 注意这里要i <= j,因为最后要处理两个元素
            if (A[i] * A[i] < A[j] * A[j])  {
                result[k--] = A[j] * A[j];
                j--;
            }
            else {
                result[k--] = A[i] * A[i];
                i++;
            }
        }
        return result;
    }
};

209.长度最小的子数组

题目描述

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

题解思路

利用双指针构造滑动窗口,使用双指针O(n)的复杂度化简暴力方法。
  • Q:什么是滑动窗口
    所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

我的代码

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
       int idx = 0, len_tem = 1, len = nums.size() + 1;
       int sum = nums[idx];
       while (idx + len_tem - 1 < nums.size()) {
            if (sum >= target) {
                if (len_tem < len) len = len_tem;
                sum -= nums[idx++];
                len_tem--;
            }
            else {
                if (idx + (++len_tem) - 1 < nums.size()) sum += nums[idx + len_tem - 1];
                else break;
            }
       }

       return (len < nums.size() + 1) ? len : 0;
    }
    
};

代码随想录代码

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int result = INT32_MAX;
        int sum = 0; // 滑动窗口数值之和
        int i = 0; // 滑动窗口起始位置
        int subLength = 0; // 滑动窗口的长度
        for (int j = 0; j < nums.size(); j++) {
            sum += nums[j];
            // 注意这里使用while,每次更新 i(起始位置),并不断比较子序列是否符合条件
            while (sum >= s) {
                subLength = (j - i + 1); // 取子序列的长度
                result = result < subLength ? result : subLength;
                sum -= nums[i++]; // 这里体现出滑动窗口的精髓之处,不断变更i(子序列的起始位置)
            }
        }
        // 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
        return result == INT32_MAX ? 0 : result;
    }
};

复杂度分析

时间复杂度:O(n)
空间复杂度:O(1)

59.螺旋矩阵II

题目描述

在这里插入图片描述

题解思路

首先这是一个将一串数字填入表格的题目
只需要掌握什么时候填入转向,朝什么方向转即可

我的代码

定义了四个方向,当我们要填入数字超过了二维数组边界,或者要填的地方已经填过数字了,此时就要转向了
class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> Matrix(n, vector<int>(n));
        // 定义4个方向
        int direction[4][2] = {{0, 1},
                                {1, 0},
                                {0, -1},
                                {-1, 0}};
        int i = 1;
        int direction_run = 0;
        int row = 0, col = -1;
        // 如果超过二维数组边界,或者该位置已经填过数字了就要转向
        while (i <= n * n) {
            if (row + direction[direction_run % 4][0] >= n \
                || col + direction[direction_run % 4][1] >= n \
                || col + direction[direction_run % 4][1] < 0) {
                direction_run++;
            }
            else {
                if (Matrix[row + direction[direction_run % 4][0]][col + direction[direction_run % 4][1]] != 0) direction_run++;
                row += direction[direction_run % 4][0];
                col += direction[direction_run % 4][1];
                Matrix[row][col] = i++;
            }
        
        }

        return Matrix;
    }
};

代码随想录代码

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
        int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
        int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
        int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
        int count = 1; // 用来给矩阵中每一个空格赋值
        int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
        int i,j;
        while (loop --) {
            i = startx;
            j = starty;

            // 下面开始的四个for就是模拟转了一圈
            // 模拟填充上行从左到右(左闭右开)
            for (j = starty; j < n - offset; j++) {
                res[startx][j] = count++;
            }
            // 模拟填充右列从上到下(左闭右开)
            for (i = startx; i < n - offset; i++) {
                res[i][j] = count++;
            }
            // 模拟填充下行从右到左(左闭右开)
            for (; j > starty; j--) {
                res[i][j] = count++;
            }
            // 模拟填充左列从下到上(左闭右开)
            for (; i > startx; i--) {
                res[i][j] = count++;
            }

            // 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
            startx++;
            starty++;

            // offset 控制每一圈里每一条边遍历的长度
            offset += 1;
        }

        // 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
        if (n % 2) {
            res[mid][mid] = count;
        }
        return res;
    }
};

Q

Q:双指针在循环中使用的优势和条件
Q:什么是滑动窗口

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值