快速幂(二进制)

快速幂问题

a^b
直接递归或迭代的话,在数值比较大的时候时间会很长。

int pow1(int a,int b){
   int r=1;
   while(b--) r*=a;
   return r;
} 

用二进制来替换十进制。
以ab为例

  1. 把b换成二进制
  2. 该二进制数第i位的权为2(i-1)
    如 a11
    11的二进制为1011;
    11=23*1+22*0+21*1+20*1
    那么
    a11=a2的零次幂+a2的一次幂+a2的三次幂

对此我们可以用以下代码实现

//迭代(二进制)
int pow2(int a,int b){
    int r=1,base=a;
    while(b!=0){
    if(b%2) r*=base;
    base*=base;
    b/=2;
    }
    return r;
}
//递归(二进制)
int f(int m,int n){   //m^n
    if(n==1) return m;
    int temp=f(m,n/2);
    return (n%2==0 ? 1 : m)*temp*temp;
}

对于二进制我们有位处理

b & 1  /*取b二进制的最低位,判断和1是否相同,相同返回1,否则返回0*/
b >> 1 /*把b的二进制右移一位,即去掉其二进制位的最低位*/

于是有以下两种算法

//快速幂(位运算)
int pow(int a,int b)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值