除自身以外数组的乘积的两种思路及JAVA代码

探讨了在O(n)时间复杂度内求解除自身外数组元素乘积的问题,提供了三种解决方案,包括错误的直接乘法除法方法,以及两种高效算法:前缀与后缀乘积法和改进版前缀乘积法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

package arrayandstring;

public class ProductExceptSelf {
    public static void main(String[] args) {

    }
    //给定一个数组,就出除自身外的所有元素的乘积,要求:不能使用除法,且在 O(n) 时间复杂度内完成此题。

    //思路,如果可以使用除法,那么非常简单,只需要将数组的所有元素的乘积除以本身 就是 除自身外的所有元素的乘积
    //如果输入数组中出现 0,那么这个方法就失效了。而且在问题中说明了不允许使用除法运算。这增加了这个问题的难度。
    public static int[] productExceptSelf(int[] num) {
        if (num == null || num.length == 0) {
            return num;//返回空
        }
        if (num.length == 1) {
            num[0] = 0;
            return num;
        }
        int sum = 1;
        for (int i = 0; i < num.length; i ++) {
            sum *= num[i];
        }

        int [] res = new int[num.length];

        for (int i = 0; i < num.length; i ++) {
            res[i] = sum / num[i];
        }

        return res;
    }

    //如果限制了不可以使用除法,且在 O(n) 时间复杂度内完成此题。
    //思路2:前缀和后缀,不必将所有数字的乘积除以给定索引处的数字得到相应的答案,
    //而是利用索引左侧所有数字的乘积和右侧所有数字的乘积(即前缀与后缀)相乘得到答案。
    //对于给定索引 i,我们将使用它左边所有数字的乘积乘以右边所有数字的乘积。

    public static int[] productExceptSelf02(int[] num) {
        if (num == null || num.length == 0) {
            return num;//返回空
        }
        if (num.length == 1) {
            num[0] = 0;
            return num;
        }
        int len = num.length;
        int [] L = new int[len];
        int [] R = new int[len];
        int [] res = new int[len];

        //填充前缀乘积,不包括i
        L[0] = 1;
        for (int i = 1; i < len; i ++) {
            L[i] = L[i - 1] * num[i - 1];
        }

        R[len - 1] = 1;
        for (int i = len - 2; i >= 0; i --) {
            R[i] = R[i + 1] * num[i + 1];
        }

        //前缀乘后缀
        for (int i = 0; i < len; i ++) {
            res[i] = L[i] * R[i];
        }

        return res;
    }

    //思路3:通过思路2,可以发现,其实可以只够造前缀,而后缀只需要一个变量表示即可
    public int[] productExceptSelf03(int[] nums) {
        int length = nums.length;
        int[] answer = new int[length];

        // answer[i] 表示索引 i 左侧所有元素的乘积
        // 因为索引为 '0' 的元素左侧没有元素, 所以 answer[0] = 1
        answer[0] = 1;
        for (int i = 1; i < length; i++) {
            answer[i] = nums[i - 1] * answer[i - 1];
        }

        // R 为右侧所有元素的乘积
        // 刚开始右边没有元素,所以 R = 1
        int R = 1;
        for (int i = length - 1; i >= 0; i--) {
            // 对于索引 i,左边的乘积为 answer[i],右边的乘积为 R
            answer[i] = answer[i] * R;
            // R 需要包含右边所有的乘积,所以计算下一个结果时需要将当前值乘到 R 上
            R *= nums[i];
        }
        return answer;
    }


}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值