二重积分
- 普通对称性–D关于y=xy=xy=x对称:
∬Df(x,y)dσ={2∬D1f(x,y)dσ f(x,y)=f(y,x)0 f(x,y)=−f(y,x)\iint_{D}f(x,y)d\sigma=\begin{cases} 2\iint_{D_1}f(x,y)d\sigma\ \ \ \ \ \ f(x,y)=f(y,x) \\ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ f(x,y)=-f(y,x) \end{cases}∬Df(x,y)dσ={2∬D1f(x,y)dσ f(x,y)=f(y,x)0 f(x,y)=−f(y,x)
其中D1D_1D1是DDD关于y=xy=xy=x对称的半个部分 - 轮换对称性:
在直角坐标系中,若将区域D中的x,y对调后,D不变,则有
I=∬Df(x,y)dxdy=∬Df(y,x)dxdyI = \iint_{D}f(x,y)dxdy=\iint_{D}f(y,x)dxdyI=∬Df(x,y)dxdy=∬Df(y,x)dxdy
不管积分区域对不对称,由于积分与变量名无关,因此天然有∬Dxyf(x,y)dxdy=∬Dyxf(y,x)dydx\iint_{D_{xy}}f(x,y)dxdy=\iint_{D_{yx}}f(y,x)dydx∬Dxyf(x,y)dxdy=∬Dyxf(y,x)dydx。而这两个积分因为坐标系不一致,不可以做运算,而对称轮换性的原理是字母对调后再相加减很简单,因此若要让两个积分做运算,必然要有Dxy=DyxD_{xy}=D_{yx}Dxy=Dyx,因此需要积分区域D关于y=xy=xy=x对称 - 二者区别:
- 积分函数的区别
- 普通对称性是对调之后若f(x,y)=f(y,x)f(x,y)=f(y,x)f(x,y)=f(y,x)则为二倍,若f(x,y)=−f(y,x)f(x,y)=-f(y,x)f(x,y)=−f(y,x)则为0
- 轮换对称性是对调之后f(x,y)f(x,y)f(x,y)和f(y,x)f(y,x)f(y,x)的关系并不重要,它俩表达式不一定一样。情况往往是二者表达式都比较复杂,但加起来比较简单,即f(x,y)+f(y,x)=af(x,y)+f(y,x)=af(x,y)+f(y,x)=a
- 积分区域的区别
- 普通对称性的积分区域D关于y=xy=xy=x对称
- 轮换对称性的积分区域满足的特征为:将x,yx,yx,y对调后,积分区域D不变,这也需要区域D关于y=xy=xy=x对称
- 整体来说,普通对称性中的关于y=xy=xy=x对称的条件强度要比轮换对称性高得多。因为二者都要积分区域关于y=xy=xy=x对称,前者还需要x、y对调后的函数之间有关系,而后者的满足条件就到此为止了。
- 积分函数的区别
- 举例:如下图就是轮换对称性