
PyTorch深度学习笔记
文章平均质量分 91
稀里糊涂的赢
不积跬步,无以至千里;不积小流,无以至江海。年轻人就是要永不停歇的瞎折腾。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
PyTorch学习笔记梯度下降法代码
PyTorch学习之梯度下降法一元一次方程求解数据点生成误差公式梯度下降法循环迭代总运行函数程序入口 一元一次方程求解 求解一元一次方程,如y=wx+b,其中x,y数据都是存在噪声的,要想求得该方程的参数,w和b值,需要求解成百组乃至上千组表现好的方程组。 实战代码流程: 数据点生成 随机生成100组数据点,代码如下: import numpy as np from numpy import random point=np.random.normal(50,2.5,size=(100,2)) np.save原创 2022-04-03 11:33:10 · 859 阅读 · 0 评论 -
PyTorch学习笔记之多层感知机
导数、偏微分均为标量,而梯度是向量。∇f∂f∂x1;∂f∂x2;⋯;∇f∂x1∂f;∂x2∂f;⋯;∂xn∂fθt1θt−αt∇fθtθt1θt−αt∇fθt对于凸函数,存在全局最优解,可利用梯度下降法求解得到。但是当利用梯度下降法求解某函数的最优值时,可能会求得的解为鞍点。原创 2022-04-03 11:31:02 · 1877 阅读 · 0 评论