这几期针对图论算法展开讨论
图是一种重要的数据结构,而且图有很多的算法可以不光运用在表面的图上面,也可以这么说,有很多事物可以抽象成图来看。
图在生活中也有很多运用,如每个城市的高铁相连,机场,等等。范围太广,我觉得很有趣并且很重要,我在之前也介绍过其中两种算法,DFS和BFS,也粗略提过dijkstra,floyd,并查集。
今天来讲一下最小生成树。
恰好期末考试考离散,我复习了一下,加深了对krusal最小生成树的理解。
算法简单。我个人觉得不如dijkstra难理解。
krusal是针对边的,我们需要建边。
毕竟是最小生成树,就是一条经过图中所有点的最短的路径。有向图和无向图同样适用。
但是最小生成树是没有回路的,如果算法走到了最后出现了回路那么就不存在最小生成树了。
首先,我们需要的是排序,对边权值的排序,从小到大排序,然后挨个加边,如果那个边加入的话形成了环,那么就不加。直到最后,就形成了最小生成树,这个算法是被证明了的,离散数学中有详细的解释,我这里就不写了。
下面是测试数据。
输入示例
9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
输出示例
37
经过我多组数据测试,应该是没问题的…
没有在OJ平台上测试。
解释一下find_end函数的用处,即判断一条边的start和end是否重合,返回了他们的终点
如果重合了就是回路,就不加这条边,如果不重合,这条边就加入答案,并且在ve数组里将这条边的终点和起点联系起来。如果i是这条边的start,那么ve[i]就是end.
最难理解的应该就是这里了。
#include<stdio.h>
#define inf 0x7fffffff
typedef struct ed{