百度科技园内有nn个零食机,零食机之间通过n−1n−1条路相互连通。每个零食机都有一个值vv,表示为小度熊提供零食的价值。
由于零食被频繁的消耗和补充,零食机的价值vv会时常发生变化。小度熊只能从编号为0的零食机出发,并且每个零食机至多经过一次。另外,小度熊会对某个零食机的零食有所偏爱,要求路线上必须有那个零食机。
为小度熊规划一个路线,使得路线上的价值总和最大。
Input
输入数据第一行是一个整数T(T≤10),表示有T组测试数据。
对于每组数据,包含两个整数n,m(1≤n,m≤100000),表示有nn个零食机,mm次操作。
接下来n−1行,每行两个整数x和y(0≤x,y<n),表示编号为xx的零食机与编号为y的零食机相连。
接下来一行由n个数组成,表示从编号为0到编号为n−1的零食机的初始价值v(|v|<100000)。
接下来mm行,有两种操作:0 x y,表示编号为x的零食机的价值变为y;1 x,表示询问从编号为0的零食机出发,必须经过编号为x零食机的路线中,价值总和的最大值。
本题可能栈溢出,辛苦同学们提交语言选择c++,并在代码的第一行加上:
`#pragma comment(linker, "/STACK:1024000000,1024000000") `
Output
对于每组数据,首先输出一行”Case #?:”,在问号处应填入当前数据的组数,组数从1开始计算。
对于每次询问,输出从编号为0的零食机出发,必须经过编号为xx零食机的路线中,价值总和的最大值。
Sample Input
1 6 5 0 1 1 2 0 3 3 4 5 3 7 -5 100 20 -5 -7 1 1 1 3 0 2 -1 1 1 1 5
Sample Output
Case #1: 102 27 2 20
题目大意:
n个零食机 n-1条边
两个操作:0 a b 是标号x的另实际价值变为b ; 1 a 查询从0号开始到a的最大价值和
思路概括:
求出dfs序后用线段树去做修改然后区间求和
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<deque>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
#define int ll
typedef long double ld;
#define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define mem(a, b) memset(a, b, sizeof(a))
const double pi = acos(-1.0);
const double eps = 1e-6;
const ll mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const int maxn = 1e5 + 5;
int w[maxn], dis[maxn], head[maxn];
int in[maxn], out[maxn];
int cnt;
int cntt;
int path[maxn];
int n, m;
struct node
{
int to, next;
}edge[maxn * 4];
void add_edge(int u, int v)
{
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
void dfs(int u, int fa)
{
in[u] = ++cntt;
path[cntt] = u;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v = edge[i].to;
if(v == fa) continue;
dis[v] = dis[u] + w[v];
dfs(v, u);
}
out[u] = cntt;
}
struct nodd
{
int sum, lazy;
}tree[maxn * 4];
void build(int l, int r, int k)
{
tree[k].sum = 0;
tree[k].lazy = 0;
if(l == r)
{
tree[k].sum = dis[path[l]];
return ;
}
int mid = (l + r) >> 1;
build(l, mid, k << 1);
build(mid + 1, r, k << 1|1);
tree[k].sum = max(tree[k* 2].sum , tree[k * 2 +1].sum);
}
void pushdown(int k)
{
tree[k * 2].sum += tree[k].lazy;
tree[k * 2 + 1].sum += tree[k].lazy;
tree[k * 2].lazy += tree[k].lazy;
tree[k * 2 + 1].lazy += tree[k].lazy;
tree[k].lazy = 0;
}
void updata(int L, int R, int val, int l, int r, int k)
{
if(L <= l && R >= r)
{
tree[k].sum += val;
tree[k].lazy += val;
return ;
}
if(tree[k].lazy) pushdown(k);
int mid = (l + r) >> 1;
if(mid >= L) updata(L, R, val, l, mid, k << 1);
if(mid < R) updata(L, R, val, mid + 1, r, k << 1 | 1);
tree[k].sum = max(tree[k << 1].sum, tree[k << 1|1].sum);
}
ll query(int L, int R, int l, int r, int k)
{
if(L <= l && R >= r)
{
return tree[k].sum;
}
if(tree[k].lazy) pushdown(k);
int mid = (l + r) >> 1;
ll ans = -INF;
if(mid >= L) ans = max(ans, query(L, R, l, mid, k << 1));
if(mid < R) ans = max(ans, query(L, R, mid + 1, r, k << 1|1));
return ans;
}
signed main()
{
ios;
int t;
int k = 1;
cin >> t;
while(t--)
{
cnt = 0;
cntt = 0;
mem(head, -1);
mem(dis, 0);
cin >> n >> m;
for(int i=1;i<n;i++)
{
int u, v;
cin >> u >> v;
add_edge(u, v);
add_edge(v, u);
}
for(int i=0;i<n;i++)
{
cin >> w[i];
}
dis[0] = w[0];
dfs(0, -1);
build(1, n, 1);
cout << "Case #" << k++ << ":" << endl;
while(m--)
{
int a, b, c;
cin >> a;
if(!a)
{
cin >> b >> c;
updata(in[b], out[b], c - w[b], 1, n, 1);
w[b] = c;
}
else
{
cin >> b;
cout << query(in[b], out[b], 1, n, 1) << endl;
}
}
}
return 0;
}