
多标签文本分类(bert英文)
文章平均质量分 83
多标签文本分类(英文)
征途黯然.
Hold me hard and mellow.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【BERT-多标签文本分类实战】之二——BERT的地位与名词术语解释
从零开始建立的NLP模型的一个主要缺点是,我们通常需要一个庞大的数据集来训练我们的网络,以达到合理的精度,但是我们必须投入大量的时间和精力在数据集的创建上。与其实现定制的、有时还很难理解的网络结构来完成特定的任务,不如使用BERT进行简单的微调,也许是一个更好的(至少不会差)选择。finetune(微调)方法指的是加载预训练好的Bert模型,其实就是一堆网络权重的值,把具体领域任务的数据集喂给该模型,在网络上继续反向传播训练,不断调整原有模型的权重,获得一个适用于新的特定任务的模型。...原创 2022-07-29 21:48:41 · 8536 阅读 · 2 评论 -
【BERT-多标签文本分类实战】之一——实战项目总览
很多数据集都是英文的,比如多标签文本数据集、层次结构标签文本数据集,想在方向上更进一步的话,必须得学会处理英文文本。而随着近些年的发展,bert算是表现超级好的几种模型之一,所以有必要跑一跑bert相关的模型。目前来看,如果方向是文本分类的话,英文文本分类、中文文本分类都需要掌握。如果需要本组件的源代码,请扫描关注我的公众号,回复“bert实战”。您还可以浏览我的另外一个项目博客【英文单标签文本分类实战】。[4]另一个项目【英文单标签文本分类实战】[3]实战前需要掌握的知识。[2]代码获取地址。......原创 2022-07-28 22:33:50 · 11056 阅读 · 0 评论 -
【BERT-多标签文本分类实战】之五——BERT模型库的挑选与Transformers
在大规模无监督语料上训练得到最终参数之后,是要把参数保存下来,之后有新的数据集要跑的时候,我们需要把这些参数数据载入到模型。这个符号有特殊的意义,BERT 包含 12 个 Transformer 层,每层接受一组 token 的 embeddings 列表作为输入,并产生相同数目的 embeddings 作为输出(当然,它们的值是不同的)。在以输入为两个句子的任务中(例如:句子 A 中的问题的答案是否可以在句子 B 中找到),该符号为这两个句子的分隔符。想要深入使用,大家仔细看看上面贴的文档,写得非常好。原创 2022-09-28 11:25:13 · 10272 阅读 · 3 评论 -
【BERT-多标签文本分类实战】之四——数据集预处理
可以看到,每个文本平均有1.2个标签,相对其他数据集来说,是极低的。:在使用预训练词向量的时候,首先会构建一个词典,然后把文本里面的每个单词逐个转化成词典里面对应的序号,最后根据序号再去预训练词向量里面找对应单词的d维向量,于是一条文本就变成了。除此之外,我们还应该关心数据集平均一个本文有几个标签、最多有几个标签、最少有几个标签,哪些标签出现的比较频繁,这些有助于我们加深对数据集、任务难点的了解。在处理数据集的文本数据前,有必要了解一下使用预处理词向量的模型,是如何处理文本数据的。的文本有3964个。原创 2022-09-27 15:10:35 · 10592 阅读 · 1 评论 -
【BERT-多标签文本分类实战】之七——训练-评估-测试与运行主程序
采样是指:把模型输出出来的概率,转化成独热数组,通常使用阈值为0.5的阈值函数,即概率大于0.5的标签采样为1,否则为0。也是把一组数据放缩到[0,1]区间,但它更类似于等比例缩放,原来大的数现在还大,可以有多个较大的概率存在,所以。它就是算单标签的损失的,大家去看一下它的公式,它对一个文本只取概率最大的那个标签;具有排斥性,放缩后的一组数据之和为1,所以这样一组标签概率只会有一个较大值;代码还是比较好懂的,但是还是有一个整体能运行起来的项目体验更佳。多标签文本分类任务,用的损失函数是。原创 2022-09-28 20:58:03 · 10135 阅读 · 8 评论 -
【BERT-多标签文本分类实战】之六——数据加载与模型代码
前5篇文章中,介绍了实战项目的前置知识,下面正式介绍项目的代码。对于每一条文本,先提取它的标签,然后转化成独热数组。这个完全是自定义的数据加载器,直接用就可以,不展开介绍。到这里,数据加载的部分就结束了。在第二节中,只是把显式的文本数据,转化成了数字化的。加载数据集的目标是:1)把文本数据转化成。2)把文本标签转化成独热数组。是压缩存储的标签,方便快速读取用的。能够自动帮我们分配好这些文本数据。:模型训练、验证、测试代码。[1] 数据集文件的构成。[1] 数据集文件的构成。:处理数据集并且预加载;原创 2022-09-28 20:05:06 · 10349 阅读 · 6 评论 -
【BERT-多标签文本分类实战】之三——多标签文本分类的方向与常用数据集介绍
该数据集是来自于亚马逊,其中包括评论(评分,文字,帮助性投票),产品元数据(描述,类别信息,价格,品牌和图像特征)和链接(也可以查看/购买的图表),在做多标签文本分类得时候主要考虑的是类别信息。:是作者收集的由书籍介绍以及层次结构的写作题材组成,共有91892 个文本,四个层级,146 个类别,四个层级分别有 7,46,77,16 个类别。:是由路透社提供的人工新闻分类数据集,有超过 800000 条的数据,共有三个层级,101个类别,三个层级分别有 4,55,42 个类别。如何解决样本少的问题?原创 2022-09-26 20:46:36 · 11063 阅读 · 0 评论