PigyChan_LeetCode 714. 买卖股票的最佳时机含手续费

本文探讨了一种在股票买卖中考虑手续费的动态规划算法。通过分析不同交易状态下的最大收益,设计了一种高效的求解策略,以实现最大化的利润。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

714. 买卖股票的最佳时机含手续费

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:

输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
输出: 8
解释: 能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

思路1.0(已看题解)
分类讨论最优子结构,dp[n]可分两种情况讨论
一:dp[n]不持股,dp[n]为 1)第n-1天持股,第n天卖出; 2)第n-1天不持股,第n天啥事不干
二:dp[n]持股,dp[n]为 1)第n-1天持股,第n天啥事不干; 2)第n-1天不持股,第n天买入
代码1.0

class Solution {
public:


    int maxProfit(vector<int>& prices, int fee) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(2, 0));


        dp[0][0] = 0;
        dp[0][1] = -prices[0];


        for (int i = 1; i < len; ++i)
        {
            dp[i][0] = max(dp[i - 1][1] - fee + prices[i], dp[i - 1][0]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
        }


        return max(dp[len - 1][0], dp[len - 1][1]);
    }
};

性能好差啊淦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值