统计机器学习-Multinoulli分布、多项式分布

本文深入探讨了多项式分布和Multinoulli分布的基本概念、分布函数及极大似然估计方法,同时提供了基因碱基序列分析的实例,通过Python代码展示如何进行数据可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Multinoulli分布(多元伯努利分布):

模型:       Mu(p)Mu(p)Mu(p)

        d面🎲获得每一面的概率: p1,p2,...,pdp_1,p_2,...,p_dp1,p2,...,pd

分布函数:
p(x∣p)=∏k=1dpkxkp(x|p)=\prod_{k=1}^d p_k^{x_k}p(xp)=k=1dpkxk
E(X)=pE(X)=pE(X)=p
似然函数:
L=log(∏n=1N∏k=1dpkxnk)=log(∏k=1dpkmk)L=log(\prod_{n=1}^N \prod_{k=1}^d p_k^{x_{nk}})=log( \prod_{k=1}^d p_k^{m_k})L=log(n=1Nk=1dpkxnk)=log(k=1dpkmk)mk=∑nxnkm_k=\sum_n x_{nk}mk=nxnk
极大似然估计:
L=ln(∏n=1→N∏k=1→dpkxnk)=ln(∏k=1→dpkmk)=∑k=1→dmklnpk+λ(∑k=1→dpk−1)L = ln(\prod^{n=1\to N}\prod^{k=1\to d}p_k^{x_{nk}}) = ln(\prod^{k=1\to d}p_k^{m_k}) = \sum^{k=1\to d}m_k lnp_k+\lambda(\sum^{k=1\to d}p_k-1)L=ln(n=1Nk=1dpkxnk)=ln(k=1dpkmk)=k=1dmklnpk+λ(k=1dpk1)
              pk=mkλp_k=\frac{m_k}{\lambda}pk=λmk   λ=−N\lambda=-Nλ=N

其中   λ(∑k=1dpk−1)\lambda(\sum_{k=1}^{d}p_k-1)λ(k=1dpk1)   的由来
是因为   ∑k=1dpk=1\sum_{k=1}^d p_k =1k=1dpk=1   ,
(概率密度函数和为1),在做极大似然估计时候,必须满足这一条件。对于带有约束的优化问题,常用拉格朗日乘子法,  λ>0\lambda>0λ>0  表示拉格朗日乘数,表示约束条件的强度。

多项式分布:

模型:       Mult(n,p)Mult(n,p)Mult(n,p)
        d面🎲获得每一面的概率: p1,p2,...,pdp_1,p_2,...,p_dp1,p2,...,pd
        掷了n次,每面出现的次数:(x1,x2,...,xd)(x_1,x_2,...,x_d)(x1,x2,...,xd)
        满足条件:x1+x2+...+xd=nx_1+x_2+...+x_d=nx1+x2+...+xd=n
             xi≥0x_i≥0xi0
分布函数:
Cnx1Cn−x1x2...Cn−x1−x2+...xd−1xdp1x1...pdxdC_n^{x_1}C_{n-x_1}^{x_2}...C_{n-x_1-x_2+...x_{d-1}}^{x_d}p_1^{x_1}...p_d^{x_d} Cnx1Cnx1x2...Cnx1x2+...xd1xdp1x1...pdxd
f(x)=n!x(1)!...x(d)!(p1)x(1)...(pd)x(d)f(x)=\frac{n!}{x^{(1)}!...x^{(d)}!}(p_1)^{x^{(1)}}...(p_d)^{x^{(d)}}f(x)=x(1)!...x(d)!n!(p1)x(1)...(pd)x(d)
多项式展开定理:
(p1+...+pd)n=∑x∈Δd,nn!x(1)!...x(d)!(p1)x(1)...(pd)x(d)(p_1+...+p_d)^n=\sum_{x∈ \Delta d,n}\frac{n!}{x^{(1)}!...x^{(d)}!}(p_1)^{x^{(1)}}...(p_d)^{x^{(d)}}(p1+...+pd)n=xΔd,nx(1)!...x(d)!n!(p1)x(1)...(pd)x(d)
矩生成函数:
在这里插入图片描述
E(xj)=npjE(x^j)=np_jE(xj)=npj
Cov[x(j),x(j′)]={npj(1−pj)                          (j=j′)−npjpj′                                 (j≠j′)Cov[x^{(j)},x^{(j')}]= \begin{cases} np_j(1-p_j) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (j=j') \\ -np_jp_{j'} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (j≠j') \end{cases}Cov[x(j),x(j)]={npj(1pj)                          (j=j)npjpj                                 (j=j)
在这里插入图片描述

一个服从多项式分布的例子:

在这里插入图片描述
将这个基因碱基序列可视化将这个基因碱基序列可视化

Matplotlib:

import xlrd as xl
import numpy as np
from collections import Counter
import matplotlib.pyplot as plt
import pandas as pd

data = xl.open_workbook("等位基因.xlsx")
table = data.sheets()[0]
if data.sheet_loaded(sheet_name_or_index=0):
    cols = table.ncols  # 列数
    lists = [table.col_values(_) for _ in range(cols)]
    list_x = [_ for _ in range(1, len(lists) + 1)]
    list_A = []
    list_G = []
    list_C = []
    list_T = []
    for item in lists:
        dicts = dict(Counter(item))
        list_A.append(dicts.get('A', 0))
        list_G.append(dicts.get('G', 0))
        list_C.append(dicts.get('C', 0))
        list_T.append(dicts.get('T', 0))
    columns = ('A', 'G', 'C', 'T')
    data = []
    data.append(list_A)
    data.append(list_G)
    data.append(list_C)
    data.append(list_T)
    data = np.array(data)
    data = data.T
    df = pd.DataFrame(data, columns=columns, index=[_ for _ in range(1, cols + 1)])
    df.plot(kind='bar', stacked=True,colormap="cool_r",legend="reverse")
    print(df)
    ax=plt.gca()
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    plt.xlabel("Sequence Position")
    plt.ylabel("Bits")
    plt.show()

else:
    print("打开文件失败")

在这里插入图片描述
Pyecharts:

import xlrd as xl
import numpy as np
from pyecharts.charts import *
from collections import Counter
from pyecharts import options as opts
from pyecharts.render import make_snapshot
from snapshot_selenium import snapshot
from pyecharts.globals import ThemeType

data = xl.open_workbook("等位基因.xlsx")
# table=data.sheet_by_name('Sheet1')
# table=data.sheet_by_index(0)
table = data.sheets()[0]
if data.sheet_loaded(sheet_name_or_index=0):
    rows = table.nrows  # 行数
    cols = table.ncols  # 列数
    lists = [table.col_values(_) for _ in range(cols)]
    list_x = [_ for _ in range(1, len(lists) + 1)]
    list_A = []
    list_G = []
    list_C = []
    list_T = []
    for item in lists:
        dicts = dict(Counter(item))
        list_A.append(dicts.get('A', 0))
        list_G.append(dicts.get('G', 0))
        list_C.append(dicts.get('C', 0))
        list_T.append(dicts.get('T', 0))
    bar = (
        Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
            .add_xaxis(list_x)
            .add_yaxis("A", list_A, stack='stack1')
            .add_yaxis("G", list_G, stack='stack1')
            .add_yaxis("C", list_C, stack='stack1')
            .add_yaxis("T", list_T, stack='stack1')
            .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
            .set_global_opts(title_opts=opts.TitleOpts(pos_left="10%"),
                             yaxis_opts=opts.AxisOpts(name="Bits"),
                             xaxis_opts=opts.AxisOpts(name="Sequence Position")))
    make_snapshot(snapshot, bar.render(), "111.png")
else:
    print("打开文件失败")

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值