二维网格迁移

本文介绍了一种二维数组迁移算法,通过三次不同的解析展示了如何在给定的二维网格中进行元素的移动。该算法考虑了移动次数对数组大小的影响,提供了三种实现方式,包括直接元素移动、数组展开再重组以及数组元素的重新分配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给你一个 n 行 m 列的二维网格 grid 和一个整数 k。你需要将 grid 迁移 k 次。
每次「迁移」操作将会引发下述活动:

  • 位于 grid[i][j] 的元素将会移动到 grid[i][j + 1]。
  • 位于 grid[i][m - 1] 的元素将会移动到 grid[i + 1][0]。
  • 位于 grid[n - 1][m - 1] 的元素将会移动到 grid[0][0]。
  • 请你返回 k 次迁移操作后最终得到的 二维网格。

示例 1:

在这里插入图片描述
输入:grid = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[9,1,2],[3,4,5],[6,7,8]]

示例 2:

在这里插入图片描述
输入:grid = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
输出:[[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]

示例 3:

输入:grid = [[1,2,3],[4,5,6],[7,8,9]], k = 9
输出:[[1,2,3],[4,5,6],[7,8,9]]

解析一

当移动次数等于二维数组的大小及其整数倍时, 数组的状态不发生改变

  • 因此首先求移动次数对二维数组长度的模:
    // times是实际移动的次数, grid.length 和 grid[0].length 是二维数组的大小
    int times = k % (grid.length * grid[0].length);

  • 用for循环来限制移动次数
    for (int i = 0; i < times; i++)

  • 具体的一次移动很简单, 我的思路是先保存grid[0][0], 从后往前遍历, 将本次遍历位置的下一个数组元素放入当前位置

  • 这样可以避免移动时覆盖下一次将要移动的元素

  • 要注意的点是: 当遍历当前行时到达行首(倒序遍历)时, 前一个元素应该为上一行的末尾元素,

  • 在循环之前, 我们需要保存数组的最后一个元素值: int temp = grid[grid.length -
    1][grid[0].length - 1];

  • 当遍历到第一个数组元素时, 我们就将temp赋值给它

  for (int j = row - 1; j >= 0; j--) {
            for (int h = col - 1; h >= 0; h--) {
                if (j == 0 && h == 0) {
                    grid[j][h] = temp;
                } else {
                    if (h == 0) {
                        grid[j][h] = grid[j - 1][col - 1];
                    } else {
                        grid[j][h] = grid[j][h - 1];
                    }
                }
            }
        }
  • 最后, 要求的返回值类型为嵌套列表, 我们需要将结果转化一下, 这里为了避免麻烦可以使用嵌套foreach
for (int[] griditem : grid) {
			ArrayList<Integer> p = new ArrayList<>();
			for (int item : griditem) {
				p.add(item);
			}
			result.add(p);
		}

下面是完整源码

public static List<List<Integer>> shiftGrid(int[][] grid, int k) {
		int times = k % (grid.length * grid[0].length);
		List<List<Integer>> result = new ArrayList<List<Integer>>();

		int temp, col = grid[0].length, row = grid.length;

		for (int i = 0; i < times; i++) {
			temp = grid[row - 1][col - 1];
			for (int j = row - 1; j >= 0; j--) {
				for (int h = col - 1; h >= 0; h--) {
					if (j == 0 && h == 0) {
						grid[j][h] = temp;
					} else {
						if (h == 0) {
							grid[j][h] = grid[j - 1][col - 1];
						} else {
							grid[j][h] = grid[j][h - 1];
						}
					}
				}
			}
		}

		for (int[] griditem : grid) {
			ArrayList<Integer> p = new ArrayList<>();
			for (int item : griditem) {
				p.add(item);
			}
			result.add(p);
		}
		return result;
	}

解析二

思路简单,二维数组展开,然后拆分,组合数组,集合就好了

代码
class Solution {
    public List<List<Integer>> shiftGrid(int[][] grid, int k) {
       int coordinate = grid.length;
        int vertical = grid[0].length;
        int newLen = vertical == 0 ? coordinate : coordinate * vertical;

        int arr[] = new int[newLen];
        int t = 0;
        /*二维数组转一维*/
        for (int i = 0; i < coordinate; i++) {
            for (int j = 0; j < vertical; j++) {
                arr[t] = grid[i][j];
                t++;
            }
        }
        int mobile = k % newLen;
        int newArr[] = new int[newLen];
        /*数组移动*/
        if (mobile != 0) {
            System.arraycopy(arr, 0, newArr, mobile, newLen - mobile);
            System.arraycopy(arr, newLen - mobile, newArr, 0, mobile);
            return arrayToList(newArr, vertical);
        } else {
            return arrayToList(arr, vertical);
        }

    }
    /*数组转集合*/
    private  List<List<Integer>> arrayToList(int[] newArr, int vertical) {
        List<List<Integer>> list = new ArrayList<>();
        List<Integer> mark = new ArrayList<>();
        for (int i = 0; i < newArr.length; i++) {
            if ((i + 1) % (vertical) == 0) {
                mark.add(newArr[i]);
                list.add(mark);
                mark = new ArrayList<>();
            } else {
                mark.add(newArr[i]);
            }
        }
        return list;
    }
}

解析三

代码

  public List<List<Integer>> shiftGrid(int[][] grid, int k) {
        int[] nums = new int[grid.length * grid[0].length];
        for(int i = 0, iMax = grid.length;i < iMax;i++) {
            for(int j = 0, jMax = grid[0].length;j < jMax;j++) {
                k %= nums.length;
                nums[k++] = grid[i][j];
            }
        }
        k = 0;
        List<List<Integer>> lists = new ArrayList<>(grid.length);
        for(int i = 0, iMax = grid.length;i < iMax;i++) {
            List<Integer> tempList = new ArrayList<>(grid[0].length);
            for(int j = 0, jMax = grid[0].length;j < jMax;j++) {
                tempList.add(nums[k++]);
            }
            lists.add(tempList);
        }
        return lists;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值