1、题目要求
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量(注意:不能倾斜容器)
测试用例如下:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
2、个人愚笨的思路
/**
* 使用双重for循环遍历
*/
public static int maxArea(int[] height) {
//定义一个变量,存放最多的水
int area = 0;
//遍历,获取两条垂线
for (int i = 0; i < height.length-1; i++) {
for (int j = i+1; j < height.length; j++) {
area = Math.max(area,(j - i) * (Math.min(height[i], height[j])));
}
}
System.out.println("最大的水容量为:"+area);
return area;
}
结果如自己所想,虽然使用测试用例能得到想要的结果,提交后却告知超出时间限制。
3、官方推荐思路
使用双指针。
解析题意,可知 容纳的出水量=两个指针中指向的数字中的较小值*指针之间的距离。
双指针代表了什么?
双指针代表的是可以作为容器边界的所有位置的范围。在最开始,双指针left和right分别指向数组的左右边界,表示数组中所有的位置都可以作为容器的边界。(留一个问题:为什么要移动指针对应数值偏小的指针?)
时间复杂度:O(N),双指针总计最多遍历整个数组一次。
空间复杂度:O(1),只需要额外的常数级别的空间。
public static int maxAreaSecond(int[] height) {
//使用双指针,即左右两边同时移动
int left = 0;
int right = height.length-1;
int area = 0;
int result = 0;
while (left < right){
//获取面积
area = (right-left)*(Math.min(height[right],height[left]));
result = Math.max(area,result);
//然后谁的值小就移动谁
if (height[left]<= height[right]){
left++;
}else {
right--;
}
}
System.out.println("使用双指针:"+result);
针对官方的解释,做出如上优化代码,成功执行。
时间从9ms到4ms,去掉了注释和打印语句(原来是打印语句耗时)
4、大神思路
//参照大神思路,修改自己的代码!
public int maxArea(int[] height) {
int left = 0;
int right = height.length-1;
int result = 0;
while (left < right){
int minHeight = Math.min(height[right], height[left]);
int area = (right-left)*minHeight;
result = Math.max(area,result);
while (height[left]<= minHeight && left<right){
left++;
}
while (height[right]<= minHeight && left<right){
right--;
}
}
return result;
}