第几个幸运数(蓝桥)

到x星球旅行的游客都被发给一个整数,作为游客编号。
x星的国王有个怪癖,他只喜欢数字3,5和7。
国王规定,游客的编号如果只含有因子:3,5,7,就可以获得一份奖品。
我们来看前10个幸运数字是:
3 5 7 9 15 21 25 27 35 45
因而第11个幸运数字是:49
小明领到了一个幸运数字 59084709587505,他去领奖的时候,人家要求他准确地说出这是第几个幸运数字,否则领不到奖品。
请你帮小明计算一下,59084709587505是第几个幸运数字。
需要提交的是一个整数,请不要填写任何多余内容

思路:
任意一个幸运数字都可以分成3^i * 5^j * 7^k 的形式,那么来一次三重循环就可以解决。

#include<iostream>
#include<cmath>
using namespace std;
int main()
{
	long long i,j,k,sum=0,Max=59084709587505;
	for(i=0;pow(3,i)<Max;i++)
	{
		for(j=0;pow(5,j)<Max;j++)
		{
			for(k=0;pow(7,k)<Max;k++)
			if(pow(3,i)*pow(5,j)*pow(7,k)<Max)
			sum++;
		}
	}
	printf("%lld",sum);
	return 0;
}

答案:
在这里插入图片描述

### 蓝桥幸运问题的循环实现方法 #### 1. 题目背景与核心概念 幸运问题是基于一种特殊的筛选算法来定义的一类数字集合。其基本思路是从自然列中逐步剔除某些特定条件下的数字,最终剩下的即为所谓的“幸运”。这种筛选过程类似于埃拉托斯特尼筛法用于求素的过程。 在蓝桥杯竞赛中,“幸运”的生成通常遵循如下规则: - 初始列表由正整构成。 - 每一次迭代都会移除当剩余列表中的某个固定间隔位置上的元素。 - 当剩余列表的第一个未被删除的值决定了下一个要跳过的步长。 具体而言,在第一次操作后仅保留奇;随后每一步都依据新产生的第一个幸存者作为基准点继续执行类似的排除动作直到满足终止条件为止[^2]。 #### 2. 循环实现详解 以下是采用 C++ 编程语言的一个典型例子展示如何利用嵌套循环结构完成上述逻辑: ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n, m; cin >> n >> m; // 输入范围[m,n] vector<int> numbers(n - m + 1); // 创建存储候选数字的空间大小等于区间长度 for(int i = 0;i<numbers.size(); ++i){ numbers[i]=m+i;// 初始化填充连续整序列从m至n } bool flag=true; while(flag && !numbers.empty()){ auto it=begin(numbers); if(*it>=n){break;} size_t step=*it; advance(it,step-1); do{ if(distance(begin(numbers),it)>=numbers.size()) break; swap(*next(it),*--end(numbers)); pop_back(numbers); advance(it,step-1); }while(true); if(!empty(numbers)){ continue ; } else {flag=false;} } cout << count_if(numbers.begin(),numbers.end(), [&](const int& num)->bool{return num >=m && num<=n ;})<<endl; } ``` 此程序片段展示了完整的流程控制机制以及据结构调整策略。其中运用到了 STL 容器 `std::vector` 来动态管理待处理的据集,并借助标准库函简化了一些复杂度较高的指针运算环节[^3]。 另外值得注意的是,为了提高效率还可以考虑预先分配足够的内存空间避免频繁扩容带来的额外开销。同时也要注意边界情况比如当输入参不合理时应给予适当提示或者直接退出运行而不是陷入死循环当中。 #### 3. 性能优化建议 对于大规模测试用例来说单纯依靠暴力枚举显然不够高效因此有必要引入更高级别的剪枝技巧或者是学推导结论辅助加速整个计算进程。例如提判断哪些情况下可以直接得出答案而无需经历完整轮次的操作等等[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值