Description
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.
Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.
The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. “-1” installation means no solution for that case.
Sample Input
3 2
1 2
-3 1
2 1
1 2
0 2
0 0
Sample Output
Case 1: 2
Case 2: 1
题意:读入n和r,再读入n个坐标,表示每个海岛的位置,r是雷达覆盖范围,问最少需要多少个雷达覆盖全部海岛,如果不能全部覆盖,输出-1.雷达只能安装在x轴上。
思路:先来看一张图:(画的挺丑的)
对于任意的一个点(x,y),我们可以用高中的作图方法(貌似是)画出雷达可以存在的范围,显然是一块区间,这一块区间很好求,在这一段区间里的话,雷达任意摆放都可以将点纳入范围内。对于不同的点,我们只需要看一下他们的雷达区间是否有交集,如果有交集的话,雷达可以摆放在雷达范围的交集内,如图中的两个黑线圆的交集,如果没交集,那么只能在增加雷达了。
同时,对于区间的选择,我们可以将区间按右端点排序,看是否有重叠。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
struct node{
double left,right;
};
bool cmp(struct node a,struct node b)
{
if(a.right==b.right) return a.left>b.left;
return a.right<b.right;
}
int main()
{
int n,d,num=0;
while(scanf("%d%d",&n,&d),n,d)
{
int i,sum=1;
struct node a[1010];
for(i=1;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
if(y>d) sum=0;
else
{
a[i].left=(double)x-sqrt((double)(d*d-y*y));
a[i].right=(double)x+sqrt((double)(d*d-y*y));
}
}
if(sum==0)
{
printf("Case %d: -1\n",++num);
continue;
}
sort(a+1,a+1+n,cmp);
double xx=a[1].right;
for(i=1;i<=n;i++)
{
if(a[i].left>xx)
{
sum++;
xx=a[i].right;
}
}
printf("Case %d: %d\n",++num,sum);
}
return 0;
}