主席树主要用于求区间第k大问题。
主席树,也叫做可持久化线段树,准确来说,应该叫做可持久化权值线段树,因为其中的每一颗树都是一颗权值线段树。
有这样一个数组: 1 1 2 3 3 3 4 4 ,那么他的权值线段树长这样:(圆圈里面的值为sum,记录出现次数)
那么主席树呢?
例如 输入数组 1 3 4,主席树的权值线段树将会有三个,第一个权值线段树树记录第一个值1,第二个权值线段树记录第二个值3,以此类推。
这是1的权值线段树
这是3的权值线段树
这是4的权值线段树
root是对每个圆的编号,用于区分。
大概了解了吧?
现在要将他们合并,每个数字都建树的话空间会爆炸,所以我们要在一棵树上修改,但是直接修改sum值会覆盖掉之前的数据,所以我们在一棵树上修改。
这是1 3合并之后的样子,为了看清楚哪个圆的sum改变了,这里先让他们的root值对应着,其他没变的不动。
但是为了区分先后顺序,我们要把上面的图改一下,改成这样
将后来修改的圆的root++,这样我们就可以知道1 3出现的先后顺序;重复这个过程,图就建好了。
真正实行起来,上面的图应该长这样
就是root的值改变了,没有出现过的圆圈不再为其赋值。
同时,我们可以看到root里面的下标就是它对应的值的下标。
这个时候,就可以求区间的问题了,例如,求区间 【1 2】,则对应的图形为root[2]-root[0]。
大概就是这样的思路,具体实行看代码吧。
题意:给定数组,求某个区间的第k大问题
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=1e5+6;
vector<int>v;
int cnt=0,n,m,x,y,k,root[maxn],a[maxn];
struct node
{
int l,r,sum;
} T[maxn*20];
void init()
{
v.clear();
cnt=0;
}
int getid(int x)
{
return lower_bound(v.begin(),v.end(),x)-v.begin()+1;
}
void update(int l,int r,int &x,int y,int pos)
{
T[++cnt]=T[y],T[cnt].sum++,x=cnt;
if(l==r)
return ;
int mid=(l+r)>>1;
if(mid>=pos)
update(l,mid,T[x].l,T[y].l,pos);
else
update(mid+1,r,T[x].r,T[y].r,pos);
}
int query(int l,int r,int x,int y,int pos)
{
if(l==r)
return l;
int mid=(l+r)>>1;
int sum=T[T[y].l].sum-T[T[x].l].sum;
if(sum>=pos)
query(l,mid,T[x].l,T[y].l,pos);
else
query(mid+1,r,T[x].r,T[y].r,pos-sum);
}
int main()
{
init();
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]),v.push_back(a[i]);
sort(v.begin(),v.end()),v.erase(unique(v.begin(),v.end()),v.end());
for(int i=1; i<=n; i++)
update(1,n,root[i],root[i-1],getid(a[i]));
for(int i=0; i<m; i++)
{
scanf("%d %d %d",&x,&y,&k);
printf("%d\n",v[query(1,n,root[x-1],root[y],k)-1]);
}
return 0;
}