扩展欧几里得 逆元 费马小定理 逆元求组合数 逆元求除法同余

本文详细介绍了扩展欧几里得算法,用于解决整数二元一次不定方程,并讲解了逆元的概念及其求解方法。通过扩展欧几里得算法可以求得除法同余的逆元,同时也讨论了费马小定理在求逆元中的应用。此外,还探讨了如何利用逆元求解组合数的模运算问题,包括计算步骤和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

扩欧讲解

欧几里得

int gcd(int a,int b)
{
	return b==0?a:gcd(b,a%b);
}

gcd和extgcd复杂度是相同的。O(log max(a,b));

形如a*x+b*y=c(a,b均不为0)的方程,a,b,c都是整数,求(x,y)的整数解。

1 判断是否有解

整数二元一次不定方程有解的充分必要是gcd(a,b)|c。如果不能整除则无解。

所以式子变为a*x+b*y=gcd(a,b);

#define ll long long
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if (b==0)
    {
        x=1,y=0;
        return a;
    }
    ll gcd=exgcd(b,a%b,x,y);
    ll tmp=x;
    x=y;
    y=tmp-a/b*y;
    return gcd;
}

gcd是gcd(a,b)的值,(x,y)是求出来的一组特解,乘上c/gcd即可得到其原式特解;

int x,y,kx,ky;
int gcd=extgcd(a,b,x,y);
x*=c/gcd;
y*=c/gcd;  //原式特解
kx=b/gcd;
ky=a/gcd;
//通解就是:x+kx*n,y-ky*n;  

求最小正整数解:

x+kx*n,x最小为(x%kx+kx)%kx;

int x,y;
int gcd=extgcd(a,b,x,y);
x*=c/gcd;
kx=b/gcd;
if(k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值