PTA甲级 1122 Hamiltonian Cycle (C++)

该博客介绍了一个关于图论的问题,即寻找包含图中所有顶点的简单回路,也就是汉密尔顿回路。提供了一个C++程序,用于检查给定路径是否构成汉密尔顿回路。程序读取图的边和查询,然后判断每个查询中的路径是否形成一个汉密尔顿回路,并输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The “Hamilton cycle problem” is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a “Hamiltonian cycle”.

In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N(2<N≤200)N (2<N≤200)N(2<N200), the number of vertices, and MMM, the number of edges in an undirected graph. Then MMM lines follow, each describes an edge in the format Vertex1 Vertex2, where the vertices are numbered from 1 to NNN. The next line gives a positive integer KKK which is the number of queries, followed by KKK lines of queries, each in the format:
nnn V1V_1V1 V2V_2V2VnV_nVn
where nnn is the number of vertices in the list, and ViV_iVi's are the vertices on a path.

Output Specification:

For each query, print in a line YES if the path does form a Hamiltonian cycle, or NO if not.

Sample Input:

6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1

Sample Output:

YES
NO
NO
NO
YES
NO

Solution:

// Talk is cheap, show me the code
// Created by Misdirection 2021-08-27 11:19:40
// All rights reserved.

#include <iostream>
#include <vector>

using namespace std;

int graph[205][205] = {0};
int path[1000];

int main(){
    int n, m;
    scanf("%d %d", &n, &m);

    for(int i = 0; i < m; ++i){
        int v1, v2;
        scanf("%d %d", &v1, &v2);
        graph[v1][v2] = 1;
        graph[v2][v1] = 1;
    }

    int k;
    scanf("%d", &k);
    for(int i = 0; i < k; ++i){
        int num;
        scanf("%d", &num);

        for(int j = 0; j < num; ++j) scanf("%d", &path[j]);
        if(num != n + 1 || path[0] != path[num - 1]) printf("NO\n");
        else{
            bool valid = true;
            vector<bool> flags(num + 1, false);

            for(int j = 1; j < num; ++j){
                if(graph[path[j - 1]][path[j]] == 0 || flags[path[j]] == true){
                    printf("NO\n");
                    valid = false;
                    break;
                }

                flags[path[j]] = true;
            }

            if(valid) printf("YES\n");
        }
    }

    return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

负反馈循环

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值