The “Hamilton cycle problem” is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a “Hamiltonian cycle”.
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N(2<N≤200)N (2<N≤200)N(2<N≤200), the number of vertices, and MMM, the number of edges in an undirected graph. Then MMM lines follow, each describes an edge in the format Vertex1 Vertex2
, where the vertices are numbered from 1 to NNN. The next line gives a positive integer KKK which is the number of queries, followed by KKK lines of queries, each in the format:
nnn V1V_1V1 V2V_2V2 … VnV_nVn
where nnn is the number of vertices in the list, and ViV_iVi's are the vertices on a path.
Output Specification:
For each query, print in a line YES
if the path does form a Hamiltonian cycle, or NO
if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO
Solution:
// Talk is cheap, show me the code
// Created by Misdirection 2021-08-27 11:19:40
// All rights reserved.
#include <iostream>
#include <vector>
using namespace std;
int graph[205][205] = {0};
int path[1000];
int main(){
int n, m;
scanf("%d %d", &n, &m);
for(int i = 0; i < m; ++i){
int v1, v2;
scanf("%d %d", &v1, &v2);
graph[v1][v2] = 1;
graph[v2][v1] = 1;
}
int k;
scanf("%d", &k);
for(int i = 0; i < k; ++i){
int num;
scanf("%d", &num);
for(int j = 0; j < num; ++j) scanf("%d", &path[j]);
if(num != n + 1 || path[0] != path[num - 1]) printf("NO\n");
else{
bool valid = true;
vector<bool> flags(num + 1, false);
for(int j = 1; j < num; ++j){
if(graph[path[j - 1]][path[j]] == 0 || flags[path[j]] == true){
printf("NO\n");
valid = false;
break;
}
flags[path[j]] = true;
}
if(valid) printf("YES\n");
}
}
return 0;
}