POJ 1740 A New Stone Game (博弈)

本文探讨了博弈论在解决一类石子游戏问题中的应用。游戏中,两名玩家轮流从一堆或多堆石子中移除石子,并可选择将剩余的石子重新分配。通过分析,发现当所有石子堆数量相等时,后手玩家有必胜策略;反之,先手玩家可通过特定策略确保胜利。文章提供了详细的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:对于n堆石子,每堆若干个,两人轮流操作,每次操作分两步,第一步从某堆中去掉至少一个,第二步(可省略)把该堆剩余石子的一部分分给其它的某些堆。最后谁无子可取即输。

题解:博弈
对于两堆相等的情况,后手是必赢的,因为后手永远可以做与先手相对称的操作。
我们可以先排序,遍历两两相邻石子堆,若都相等则后手必赢。

对于不满足上述情况的,先手必赢,类似巴什博弈,我们只要操作石子数量最多的堆,使得其他堆两两相等即可,对于偶数堆保留该堆,对于奇数堆该堆置0。

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
int n, a[11];
int main() {
	while (scanf("%d", &n) && n) {
		a[n + 1] = -1;
		for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
		sort(a + 1, a + n + 1);
		int flag = 1;
		for (int i = 1; i <= n; i += 2) {
			if (a[i] != a[i + 1]) {
				flag = 0;
				break;
			}
		}
		if (flag) puts("0");
		else puts("1");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值