P2709 小B的询问 (莫队算法)

本文深入解析了莫队算法的原理与应用,通过一道典型题目详细展示了如何使用莫队算法解决离线区间查询问题。从算法核心思想到具体实现步骤,再到代码细节,为读者提供了全面的学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjgwOTY1,size_16,color_FFFFFF,t_70)
题解:莫队算法
第一道莫队,莫队算法主要是能处理离线区间查询问题。

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
const int maxn = 5e4 + 5;
int block, res, belong[maxn], cnt[maxn], ans[maxn];
struct node {
    int l, r, id;
    bool operator < (const node& b) const {
        if (belong[l] == belong[b.l]) return r < b.r;
        else return belong[l] < belong[b.l];
    }
}q[maxn];
void add(int x) {
    res -= cnt[x] * cnt[x];
    ++cnt[x];
    res += cnt[x] * cnt[x];
}
void del(int x) {
    res -= cnt[x] * cnt[x];
    --cnt[x];
    res += cnt[x] * cnt[x];
}
int n, m, k, a[maxn], l, r;
int main() {
	scanf("%d%d%d", &n, &m, &k);
    block = sqrt(n);
    for (int i = 1; i <= n; i++) {
        scanf("%d", &a[i]);
        belong[i] = (i - 1) / block + 1;
    }
    for (int i = 1; i <= m; i++) scanf("%d%d", &q[i].l, &q[i].r), q[i].id = i;
    sort(q + 1, q + m + 1);
    res = 0, l = 1, r = 0;
    for (int i = 1; i <= m; i++) {
        while (l < q[i].l) del(a[l++]);
        while (l > q[i].l) add(a[--l]);
        while (r > q[i].r) del(a[r--]);
        while (r < q[i].r) add(a[++r]);
        ans[q[i].id] = res;
    }
    for (int i = 1; i <= m; i++) printf("%d\n", ans[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值