论文阅读-(GLIP)Grounded Language-Image Pre-training (目标检测+定位)

GLIP模型结合目标检测和定位任务,创建统一训练框架,使用伪标签扩大数据规模,实现zero-shot在COCO数据集上49.8 AP。通过融合图像和文本特征,GLIP在无微调情况下表现优秀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paper:Grounded Language-Image Pre-training

Code:https://github.com/microsoft/GLIP

简介:

  • 定位任务与图像检测任务非常类似,都是去图中找目标物体的位置,目标检测为给出一张图片找出bounding box,定位为给出一个图片和文本,根据文本找出物体。GLIP 模型统一了目标检测(object detection)和定位(grounding)两个任务,构建了一个统一的训练框架,从而将两个任务的数据集都利用起来。再配合伪标签的技术来扩增数据,使得训练的数据量达到了前所未有的规模。在训练完成之后,直接以 zero-shot 的方式在 COCO 数据集上进行测试,达到了 49.8 AP。

  • GLIP 进行 zero-shot 测试的结果如下图所示,不管是给定几个类别(如 person、pistol、apple等)还是给定一段话(如 ‘there are some holes on the road’)作为文本编码器的输入,GLIP 模型都能从图像中找到对应物体的位置。

 如何统一两个任务:

detection 和 grouding 任务的目标函数都是由两部分损

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值