Leetcode-264 丑数

本文探讨了两种算法在解决第n个丑数问题中的应用:一种是利用set数据结构和小顶堆思想,另一种是基于动态规划的递推公式。通过对比两种方法,展示了如何避免重复计算并高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

set 去除重复
小顶堆是一个元素出来然后存 3 个元素

class Solution {
public:
    int nthUglyNumber(int n) {
        //因为int 太小容易超出范围 改用long
        set<long> s;//set是有序的,且互不重复
        long answer=1;//初始化第一个数
        for(int i=1;i<n;i++){
            s.insert(answer*2);
            s.insert(answer*3);
            s.insert(answer*5);
            //类似队列操作
            answer = *s.begin();
            s.erase(answer);
        }
        return answer;
    }
};

动态规划
递推公式——dp[i]=min(dp[p_2]*2,dp[p_3]*3,dp[p_5]*5)
动态规划是标识 3 个元素,通过比较他们的 2 倍、3 倍、5 倍的大小,来一个一个存

class Solution {
public:
    int nthUglyNumber(int n) {
        vector<int> dp(n);
        //初始化边界条件
        dp[0]=1;
        int p_2=0,p_3=0,p_5=0;//代表第几个数的2倍,3倍,5倍
        for (int i=1;i<n;i++){
            //小顶堆的方法是先存再排,dp 的方法则是先排再存
            //每次计算三个丑数取最小,三个中必由两个参与上一次比较
            dp[i]=min(min(2*dp[p_2],3*dp[p_3]),5*dp[p_5]);
            //自增每次的最小丑数值的下标
            if(dp[i]==2*dp[p_2]){
                p_2++;
            }
            if(dp[i]==3*dp[p_3]){
                p_3++;
            }
            if(dp[i]==5*dp[p_5]){
                p_5++;
            }
            //通过三个if判断实现不重复
            //假如一个数既可通过*2得到又可以通过*3得到,此时必然会重复计算并重复加入到数组
            //所以if如果换成if-else,必然会有大量重复值出现
        }
        return dp[n-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值