设h(n)为catalan数的第n+1项,令h(0)=1,h(1)=1,catalan数满足递推式 :
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + … + h(n-1)*h(0) (n>=2)
递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=0,1,2,…)
递推关系的另类解为:
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,…)
变形通式:C(m,2n)-C(m-1,2n);(常用)
其前几项为(从第零项开始) : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …
例子一:n个节点的二叉树,问可以有多少种画法。
如果节点数为0,我们默认是一个空树,所以有1种画法.h[0]=1
如果有1个节点,那么也是1种画法,h[1]=1。
节点数是2,那么就是2种,f[2]=2。
节点数是3,就是5种。怎么想的呢,我们肯定得有根节点,剩下2个节点。分三种情况,如果只有左子树、右子树为空,那么我们相当于左子树为节点是2的那两种情况,右子树为空相当于节点为0的情况;当既有左子树又有右子树,那么左右子树个1个,相当于把节点数为1的一种情况**;左子树为空右子树节点为2**,跟第一种情况相同。
我们可以得到关系式:**h[3]=h[0]*h[2]+h[1]h[1]+h[2]h[1]=2+1+2=5。其中 这三种情况是组合数学与计数中的加法原理,每种情况中左子树的情况乘以右子树的情况是乘法原理。
那么节点是4呢,h[4]=h[0]*h[3]+h[1]*h[2]+h[2]*h[1]+h[3]*h[0]=14种情况。以此类推。
节点是n,h[n]=h[0]*h[n-1]+h[1]*h[n-2]+…+h[n-2]*h[1]+h[n-1]*h[0]
例子二:括号匹配
我们把‘(’设为1,‘)’设为-1,那么在任何步骤下都不可能是负数,在最后一定是0.比如())就是-1,就是不合法,())))就是-2,也是不合法
一对括号:一种情况.()是合法的
两对括号:两种情况.()()和(())是合法的
三对括号:四种情况.()()() ((())) ()(()) (())() (()())
四对括号:我们首先拿出一对括号A,然后分括号里和括号外两种情况。(里)外。那么括号A里没有括号,那么A外就有三对括号;括号A里有一对括号,A外就有两对括号;括号A里有两对括号,A外就有一对括号;括号A里有三对括号,A外就有0对。跟上面例子中二叉树的画法公式相似,也是卡特兰树。我们可以把括号A当成二叉树的根节点,A里相当于左子树,A外相当于右子树。
例子三:购票问题
游乐园门票50元一张,每人限购一张,现在有10个小朋友排队购票,其中5个小朋友带了一张50元钞票,另5个小朋友带了100元的钞票,售票员没有零钱,问有多少种排队方法,使售票员可以找开零钱。
这个题跟括号匹配是相同的,50元的小朋友必须是先进的。
例子四:分割三角形
通过确定一条边,和其他节点
例子五:栈
问题:栈的出栈顺序
1进栈,1出栈。一种情况。
12进栈。两种情况:1先进出,2再进出。12进,21出。
123进栈。五种情况。
1234进栈。我们分为四种情况:1最后出栈、2最后出栈、3最后出栈、4最后出栈。1最后出栈,那么我们只能把1压在栈底,然后2、3、4不管以什么方式进出,最后1出。2、3、4进出方式,不就跟只有1、2、3进出方式一样吗,只不过序号变了而已;2最后出栈,那么必须1先进出栈,然后2再进栈,并压在栈底,3、4进出栈,2再出栈;3最后出栈,那么1、2先进栈然后不管以什么方式出栈,然后3进栈,压在栈底,4以任何方式进出栈;4最后出栈,1、2、3不管以什么方式进出栈,然后4进出栈。
那么不就是h[0]*h[3]+h[1]*h[2]+h[2]*h[1]+h[3]*h[0]吗
mod模板
递推O(n^2)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=3e3+20;
const int mod=100000007;
int n;
ll a[maxn]={1};
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=0;j<i;j++){
a[i]+=a[j]*a[i-j-1];
a[i]%=mod;
}
}
printf("%lld\n",a[n]);
return 0;
}
代码是真的看不懂啊,就算是模板吧
#include<bits/stdc++.h>
using namespace std;
const int N=2000005;
//注意是2*n
int mp[N],p[N/10],cnt[N],r;
//mp[]表示每个数最小的质因数,p[]表示质数表,cnt[]用于计算指数,r为取模数
int qpow(int a,int b)
//快速幂:计算a^b%r
{
int ans=1;
do
{
if(b&1)
ans=(long long)ans*a%r;
a=(long long)a*a%r;
}
while(b/=2);
return ans;
}
int main()
{
int n;
cin>>n>>r;
int pn=0;
for(int i=2;i<=2*n;i++)
{
if(!mp[i])
{
p[++pn]=i;
mp[i]=i;
}
for(int j=1;j<=pn&&i*p[j]<=2*n;j++)
{
mp[i*p[j]]=p[j];
if(i%p[j]==0)
break;
}
}
//欧拉线性筛法
for(int i=1;i<=n;i++)
cnt[i]=-1;
//需要除以分母
for(int i=n+2;i<=2*n;i++)
cnt[i]=1;
//乘以分子
for(int i=2*n;i>1;i--)
if(mp[i]<i)
//如果是合数,向下传递,可以保证O(n)
{
cnt[mp[i]]+=cnt[i];
cnt[i/mp[i]]+=cnt[i];
}
int ans=1;
for(int i=2;i<=2*n;i++)
if(mp[i]==i)
//如果是质数计入答案,合数已经处理过了
ans=(long long)ans*qpow(i,cnt[i])%r;
//防止中间过程溢出
cout<<ans<<endl;
return 0;
}
f[1~500]高精度模板
#include<iostream>
#include<stdio.h>
using namespace std;
int f[550][500];//f[i][j]±íʾµÚi¸öÊýµÄµÚjλ¡£
int len=1;
void add(int u)
{
for(int i=1;i<=len;i++)
f[u][i]=f[u-1][i]+f[u][i];
for(int i=1;i<=len;i++)
{
f[u][i+1]+=f[u][i]/10;
f[u][i]%=10;
}
if(f[u][len+1])len++;
}
int main()
{
int n,p;
cin>>n;
f[1][1]=1;
for(int i=2;i<=n+1;i++)
for(int j=1;j<=i;j++)
add(j);
for(int i=len;i>0;i--)
cout<<f[n][i];
}
卡特兰数:C(2n,m)-C(2n,m-1)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int p=20100403;
ll q,n,m;
ll ans,fz=1,fm=1;
ll gcd(ll a,ll b,ll &gd,ll &x,ll &y)
{
if(!b) x=1,y=0,gd=a;
else gcd(b,a%b,gd,y,x),y-=x*(a/b);
}
ll work(ll a,ll b)
{
ll gd,x,y;
gcd(a,b,gd,x,y);
if(gd==1)
return (x+b)%b;
}
int main()
{
scanf("%lld%lld",&n,&m);
fz=n-m+1;
fm=n+1;
for(int i=n+1;i<=n+m;i++)
fz=((fz%p)*(i%p))%p;
for(int i=2;i<=m;i++)
fm=((fm%p)*(i%p))%p;
ll ny=work(fm,p);
ans=(ny*fz)%p;
printf("%lld\n",ans);
return 0;
}
高精度
#include<bits/stdc++.h>
#define Mod (1000000000000000LL)
struct BigNum {
unsigned int Top;
unsigned long long Num[1505];
inline void Print() {
printf("%llu", Num[Top]);
for (register int p = Top - 1; p; --p) printf("%015llu", Num[p]);
puts("");
}
inline void operator=(unsigned int Val) {
memset(Num, 0, sizeof Num);
Num[Top = 1] = Val;
}
inline void operator*=(unsigned long long Val) {
BigNum Mul;
Mul = 0;
for (register int i = 1; i <= Top; ++i) {
Mul.Num[i] += Num[i] * Val;
Mul.Num[i + 1] += Mul.Num[i] / Mod;
Mul.Num[i] %= Mod;
}
Mul.Top = Top;
if (Mul.Num[Top + 1])
++Mul.Top;
*this = Mul;
}
} Ans;
int n, m, Fac[10005];
void Divide(int x, int v) {
for (register int i = 2; i * i <= x; ++i)
while (x % i == 0) x /= i, Fac[i] += v;
if (x > 1)
Fac[x] += v;
}
int main() {
scanf("%d%d", &m, &n);
Ans = 1;
Divide(m + 1 - n, 1);
for (register int i = m + 2; i <= n + m; ++i) Divide(i, 1);
for (register int i = 2; i <= n; ++i) Divide(i, -1);
for (register int i = 2; i <= 10000; ++i)
while (Fac[i]) Ans *= i, --Fac[i];
Ans.Print();
return 0;
}