P1976 鸡蛋饼

本文探讨了卡特兰数在解决特定连线问题中的应用,通过递推公式计算不同点数下合法连线组合的数量。从n=1开始,逐步解析至n=4的情况,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

很明显的卡特兰数。
假如n=1,那么显然就有一种情况
n=2,有两种情况
n=3,我们依次标1、2、3、4、5、6,六个点,还是分三种情况,假如1、2相连,那么3、4、5、6就是n=2的情况;1与4相连,2只能与3相连,5、6只能相连;1与6相连,2、3、4、5随意连,也就是2*1=2种,所以5种情况。(1不能与3相连,因为剩下2点,题目中给出每个点只能连1次且线与线不能香蕉相交)
n=4,我们分别标一下1、2、3、4、5、6、7、8,八个点,分四种情况,1、2相连,3、4、5、6、7、8随意连;1、4相连,2只能与3相连,5、6、7、8随意连;1、6相连,7只能连8,2、3、4、5随意连;1、8相连,2、3、4、5、6、7随意连,加以来是14种
以此类推

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=3e3+20;
const int mod=100000007;
int n;
ll a[maxn]={1};
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		for(int j=0;j<i;j++){
			a[i]+=a[j]*a[i-j-1];
			a[i]%=mod;
		}
	}
    printf("%lld\n",a[n]);  
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值