PAT甲级真题1072 加油站

本文介绍了一种算法,用于解决加油站的最佳选址问题。目标是在确保所有房屋都在服务范围内且不超过最大服务距离的前提下,找到与最近房屋距离最远的位置。若存在多个解决方案,则选择与所有房屋平均距离最小且编号最小的位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加油站的建造位置必须使加油站与距离它最近的房屋的距离尽可能远。

与此同时,它还必须保证所有房屋都在其服务范围内。

现在,给出了城市地图和加油站的几个候选位置,请你提供最佳建议。

如果有多个解决方案,请输出选取位置与所有房屋的平均距离最小的解决方案。

如果这样的解决方案仍然不是唯一的,请输出选取位置编号最小的解决方案。

输入格式
第一行包含四个整数 NN,房屋总数,MM,加油站的候选位置总数,KK,连接房屋或加油站的道路总数,DsDs 加油站的最大服务范围。

所有房屋的编号从 11 到 NN,所有加油站侯选位置编号从 G1 到 GM。

接下来 KK 行,每行格式如下:

P1 P2 Dist
其中,P1 和 P2 表示一条 无向 道路连接的两个房屋或加油站侯选位置的编号,Dist 是道路长度,这是一个整数。

输出格式
第一行输出所选位置的编号。

第二行输出加油站与距离其最近的房屋之间的距离以及与所有房屋之间的平均距离,精确到小数后一位。

如果解决方案不存在,则输出 No Solution。

数据范围
1≤N≤1031≤N≤103,
1≤M≤101≤M≤10,
1≤K≤1041≤K≤104,
1≤Ds≤2001≤Ds≤200,
1≤Dist≤50001≤Dist≤5000
输入样例1:
4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2
输出样例1:
G1
2.0 3.3
输入样例2:
2 1 2 10
1 G1 9
2 G1 20
输出样例2:
No Solution

 #include<bits/stdc++.h>
using namespace std;
const int N=1020,INF = 0x3f3f3f3f;;
int n,m,k,d;
int dist[N],st[N],g[N][N];
int getid(string a){
	int id=0,i=0,len=a.length();
	while(i<len){
		if(a[i]!='G'){
		id=id*10+(a[i]-'0');
	}
		i++;
	}
	if(a[0]=='G')return n+id;
	else return id;
}
void dijiskstra(int s,int&mind,int&sumd){
	memset(dist,0x3f,sizeof dist);
	memset(st,0,sizeof st);
	dist[s]=0;
	for(int i=1;i<=n+m;i++){
		int t=-1;
	  for(int j=1;j<=n+m;j++){
	  	if(!st[j]&&(t==-1||dist[j]<dist[t]))
	  	    t=j;
	  }
	if(t==-1)break;
	st[t]=1;
	for(int v=1;v<=n+m;v++){
		dist[v]=min(dist[v],dist[t]+g[t][v]);
	}
  }
    for(int i=1;i<=n;i++) { //枚举居民房 
       if(dist[i]>d){
       	mind=-INF;
       	return ;//如果有一个居民房距离超过d,程序结束 
    }
  } 
    mind = INF, sumd = 0;
    for (int i = 1; i <= n; i ++ )
    {
        mind = min(mind, dist[i]);
        sumd += dist[i];
    } 
}
int main(){
	cin>>n>>m>>k>>d;
	memset(g, 0x3f, sizeof g);//别忘了初始化图 
	while(k--){
		string a,b;
		int c;
		cin>>a>>b>>c;
		int x=getid(a);
		int y=getid(b);
		g[x][y]=g[y][x]=min(g[x][y], c);	
	}
	int res=-1,mind=0,sumd=INF;
	for(int i=n+1;i<=n+m;i++){
		int d1,d2;
		dijiskstra(i,d1,d2);
		
		if(d1>mind)mind=d1,sumd=d2,res=i; 
		else if(d1==mind&&d2<sumd)sumd=d2,res=i;//距离相等,总和较小 	
	} 	
	if (res == -1) puts("No Solution");
    else printf("G%d\n%.1f %.1f\n", res - n, (double)mind, (double)sumd / n + 1e-8);
	
  return 0;
}
### 关于 PAT 甲级真题 1165 的分析 目前并未找到具体针对 PAT 甲级真题编号为 **1165** 的原题内容或详细解析。然而,基于已有的参考资料以及 PAT 考试的特点,可以推测该题目可能涉及常见的算法设计与实现问题。 #### 可能的主题方向 根据以往的 PAT 甲级考试趋势,编号为 **1165** 的题目可能会覆盖以下几个方面之一: - 数据结构操作(链表、树、图等) - 字符串处理 - 数学计算(分数化简、质因数分解等) - 排序与查找算法的应用 以下是几个常见主题的具体例子及其解决思路: --- ### 示例:字符串处理类问题 如果 **1165** 是关于字符串的操作,则可能是如下形式的问题: > 输入一段文字,统计其中单词的数量并按字典顺序输出这些单词。 解决方案可以通过以下 Python 实现完成: ```python import sys from collections import Counter def count_words(): text = sys.stdin.read().strip() words = re.findall(r'\b\w+\b', text.lower()) word_count = Counter(words) sorted_words = sorted(word_count.items(), key=lambda x: (x[0], -x[1])) result = [] for word, freq in sorted_words: result.append(f"{word} {freq}") return "\n".join(result) print(count_words()) ``` 此代码片段实现了对输入文本中的单词计数功能,并按照字母顺序排列结果[^4]。 --- ### 示例:数据结构应用类问题 假设 **1165** 涉及到二叉树遍历或者构建,则其核心逻辑可参考以下 C++ 实现: ```cpp #include <iostream> #include <vector> using namespace std; struct TreeNode { int val; TreeNode* left; TreeNode* right; }; TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { if(preorder.empty()) return nullptr; int root_val = preorder[0]; TreeNode* root = new TreeNode{root_val, nullptr, nullptr}; auto it = find(inorder.begin(), inorder.end(), root_val); int index = distance(inorder.begin(), it); vector<int> left_inorder(inorder.begin(), inorder.begin() + index); vector<int> right_inorder(inorder.begin() + index + 1, inorder.end()); vector<int> left_preorder(preorder.begin()+1, preorder.begin()+index+1); vector<int> right_preorder(preorder.begin()+index+1, preorder.end()); root->left = buildTree(left_preorder, left_inorder); root->right = buildTree(right_preorder, right_inorder); return root; } ``` 上述代码展示了如何通过前序和中序序列重建一棵二叉树[^5]。 --- ### 示例:数学运算类问题 对于一些涉及到分数简化或其他数学概念的题目,例如约分问题,可以用以下方法求解: ```python from math import gcd def reduce_fraction(numerator, denominator): common_divisor = gcd(abs(numerator), abs(denominator)) reduced_num = numerator // common_divisor reduced_denom = denominator // common_divisor if reduced_denom < 0: reduced_num *= -1 reduced_denom *= -1 return f"{reduced_num}/{reduced_denom}" result = reduce_fraction(-8, 12) print(result) # 输出 "-2/3" ``` 这段程序能够有效地将任意给定的分子分母转换成最简形式[^6]。 --- ### 总结说明 虽然当前无法直接获取到 PAT 甲级真题 **1165** 的确切描述,但从过往经验来看,它很可能属于以上提到的一种类型。建议考生多加练习类似的经典习题来提升应考能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值