HHUOJ 1730 畅通工程1

本文详细解析了HHUOJ1730畅通工程1问题,利用并查集算法解决城镇道路连接问题,旨在找出使任意两城镇间均可交通所需的最少新增道路数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HHUOJ 1730 畅通工程1

题目描述

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

输入

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。

输出

对每个测试用例,在1行里输出最少还需要建设的道路数目。

样例输入

5 3
1 2
3 2
4 5
0

样例输出

1

并查集水题:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

int father[1005];
int findFather(int x){
    int a=x;
    while(x!=father[x]){
        x=father[x];
    }
    while(a!=father[a]){
        int z=a;
        a=father[a];
        father[z]=x;
    }
    return x;
}

int main()
{
    int n,m;
    while(cin>>n){
            if(n==0) break;
            else scanf("%d",&m);
            for(int i=1;i<=n;i++){
                father[i]=i;
            }
            int a,b;
   while(m--){
       scanf("%d%d",&a,&b);
           int m=findFather(a);
           int n=findFather(b);
           if(m!=n) father[m]=n;
        }
        int cnt=0;
        for(int i=1;i<=n;i++){
            if(father[i]==i){
                cnt++;
            }
        }
        printf("%d\n",cnt-1);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旺 崽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值