题目描述
YZ is the king of the kingdom. There are n cities in his kingdom. To celebrate the 50th anniversary of the founding of his country, YZ decided to distribute supplies as a reward to all the cities.
We all know that the further the city is from the capital (always at 1), the more it will cost to transport. We define K as the shortest distance between a city and the capital, and ignore the difference in distance between different cities(all is 1 unit). Cost from capital to the city is
2
K
2^K
2K .
Now YZ gives you the map of his kingdom, and asks you if you can calculate the total cost.
(We guarantee that it is a connected graph.)
输入描述:
The first line contains two integers n and m
(
1
≤
n
≤
1
0
6
,
n
−
1
≤
m
≤
m
i
n
(
2
∗
1
0
6
,
(
n
−
1
)
×
n
/
2
)
)
(1 \le n \le 10^6,n-1 \le m \le min(2*10^6,(n-1)\times n/2))
(1≤n≤106,n−1≤m≤min(2∗106,(n−1)×n/2)), which means there are n cities and m roads.
The next m lines contains two integers u and v, denoting there is a road connecting city u and city v.
输出描述:
Print the only line containing a single integer. It should be equal to the total cost mod 1e9+7.
示例1
输入
3 2
1 2
2 3
输出
6
示例2
输入
7 6
1 2
1 3
1 4
3 5
3 6
4 7
输出
18
这题不难,用 BFS 求出 1 到每个点的距离,然后跑一遍 O(N) 计算答案即可,数据量大要用快读,AC代码如下:
#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int N = 1e6 + 5;
const ll mod = 1e9 + 7;
vector<int> g[N];
ll d[N] = {0}, vis[N] = {0};
ll power(ll a, ll b) { return b ? power(a * a % mod, b / 2) * (b % 2 ? a : 1) % mod : 1; }
void bfs(int u) {
queue<int> q;
q.push(u);
while (!q.empty()) {
int a = q.front();
q.pop();
for (int b:g[a]) {
if (!vis[b]) {
d[b] = d[a] + 1;
vis[b] = 1;
q.push(b);
}
}
}
}
inline int read() {
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
int main() {
int n, m, x, y;
n = read();
m = read();
while (m--) {
x = read(), y = read();
g[x].push_back(y);
g[y].push_back(x);
}
bfs(1);
ll ans = 0;
for (int i = 2; i <= n; i++) ans = (ans + power(2, d[i])) % mod;
cout << ans;
}