历届试题 k倍区间

本文详细解析了历届试题中“k倍区间”问题的高效算法,通过优化区间求和的方法,避免了超时问题,实现了快速准确地找出数列中所有和为K倍数的区间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

历届试题 k倍区间

问题描述
  给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
  你能求出数列中总共有多少个K倍区间吗?
输入格式
  第一行包含两个整数N和K。(1 <= N, K <= 100000)
  以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出格式
  输出一个整数,代表K倍区间的数目。
样例输入
5 2
1
2
3
4
5
样例输出
6
数据规模和约定
  峰值内存消耗(含虚拟机) < 256M
  CPU消耗 < 2000ms
  
思路1:枚举区间,求区间和,再取模,为0,count++,输出count。

代码超时如下:

#include<iostream>
using namespace std;
long long ai[100000];
int main()
{
	long long n, k,sum=0;
	cin >> n >> k;
	for (int i = 0; i < n; i++)
		cin >> ai[i];
	int count = 0;
	for (int i = 0; i < n; i++)
	{
		sum = 0;
		for (int j = 0; j < n - i; j++)
		{
			sum += ai[i+j];
			/*cout << "[" << i << "," << i+j<< "]" << sum << endl;*/
			if (sum%k == 0)count++;
		}
	}
	cout << count << endl;
	return 0;
}

学习博客思路:点击
我们规定sum[i]表示第1个元素到第i个元素的和对k取模后的值。那么sum[r] - sum[l-1]就是区间[l,r]的和。区间[l,r]的和是k的倍数即(sum[r] - sum[l-1])%k == 0 ,即sum[r]%k == sum[l-1]%k。也是说当sum[r]与sum[l-1]相等时,区间[l,r]是k倍区间。用一个数组记录取模后值相同的个数。

计数就可以根据数组中统计的个数来算:
对k取模,余数只能为0-k-1,所以数组下标就是0-k-1
k倍区间可以是[l,r] (l<r)这种两个端点,求这样的个数就是用组合数,C(2,num)。
也可以是[l,l]即单个数区间,如示例区间【2,2】=2,对2取模为0,是k倍区间,求这样的个数,直接就是num[0]的个数。

代码如下:

#include<iostream>
using namespace std;
long long ai[100000],sum[100000],num[100000];
int main()
{
	long long n, k;
	cin >> n >> k;
	//sum[i]是前i项的和对k取模后的值
	//num[sum[i]]是记录值为sum[i]出现的次数
	for (int i = 1; i<=n; i++)
	{
		cin >> ai[i];
		sum[i] = (sum[i - 1] + ai[i]) % k;
		num[sum[i]]++;
	}
	long long ans = 0;
	for (int i = 0; i < k; i++)
		ans += num[i] * (num[i] - 1) / 2;
	ans += num[0];//本身该数就是k的倍数
	cout << ans << endl;
	return 0;
}

欢迎批评指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值