历届试题 k倍区间
问题描述
给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入格式
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出格式
输出一个整数,代表K倍区间的数目。
样例输入
5 2
1
2
3
4
5
样例输出
6
数据规模和约定
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
思路1:枚举区间,求区间和,再取模,为0,count++,输出count。
代码超时如下:
#include<iostream>
using namespace std;
long long ai[100000];
int main()
{
long long n, k,sum=0;
cin >> n >> k;
for (int i = 0; i < n; i++)
cin >> ai[i];
int count = 0;
for (int i = 0; i < n; i++)
{
sum = 0;
for (int j = 0; j < n - i; j++)
{
sum += ai[i+j];
/*cout << "[" << i << "," << i+j<< "]" << sum << endl;*/
if (sum%k == 0)count++;
}
}
cout << count << endl;
return 0;
}
学习博客思路:点击
我们规定sum[i]表示第1个元素到第i个元素的和对k取模后的值。那么sum[r] - sum[l-1]就是区间[l,r]的和。区间[l,r]的和是k的倍数即(sum[r] - sum[l-1])%k == 0 ,即sum[r]%k == sum[l-1]%k。也是说当sum[r]与sum[l-1]相等时,区间[l,r]是k倍区间。用一个数组记录取模后值相同的个数。
计数就可以根据数组中统计的个数来算:
对k取模,余数只能为0-k-1,所以数组下标就是0-k-1
k倍区间可以是[l,r] (l<r)这种两个端点,求这样的个数就是用组合数,C(2,num)。
也可以是[l,l]即单个数区间,如示例区间【2,2】=2,对2取模为0,是k倍区间,求这样的个数,直接就是num[0]的个数。
代码如下:
#include<iostream>
using namespace std;
long long ai[100000],sum[100000],num[100000];
int main()
{
long long n, k;
cin >> n >> k;
//sum[i]是前i项的和对k取模后的值
//num[sum[i]]是记录值为sum[i]出现的次数
for (int i = 1; i<=n; i++)
{
cin >> ai[i];
sum[i] = (sum[i - 1] + ai[i]) % k;
num[sum[i]]++;
}
long long ans = 0;
for (int i = 0; i < k; i++)
ans += num[i] * (num[i] - 1) / 2;
ans += num[0];//本身该数就是k的倍数
cout << ans << endl;
return 0;
}
欢迎批评指正!