C. Xor Tree 字典树

博客围绕一个算法问题展开,给定n个数对应n个节点,通过异或值连边构成连通图,求最少删除多少数可使图变为树。解法是将数放入01字典树,根据子树情况计算最大连通块大小,最后通过深度优先搜索(dfs)求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题意:

给你n个数对应n个节点,对与每一个数ai,在剩余数中找一个aj,使得ai^aj异或值为最小值,并将这两个节点连无向边,由此可以得到一个连通图,可以选择删除一些数,求最少删除多少数可以使得最终连通图为一颗树

解法:

把每一个数放到01字典树上面,假设每个字数根节点的值表示为该子树中覆盖的数ai可以组成的最大连通块,

那么对于一个父节点u和它的两个儿子节点x和y,

1.如果x和y子树上都有题目给的数,u子树的最大联通块大小ans_u=max(ans_x+1,ans_y+1) 此处+1表示左子树的连通块最多只能再加一个右子树中的数,如果加两个那么这两个数连边才是最小异或,会出现两个连通块的情况不合法

2.如果x和y子树其中只有一个子树(该子树代号为z)上有题目给的数,那么ans_u=ans_z

最后dfs即可

#include<bits/stdc++.h>
using namespace std;
int n;
int a[200005];
int tree[30*200005][2];
int tot=1;
void insert(int x)
{
	int now=1;
	for(int i=30;i>=0;i--) 
	{
		int id =( (x>>i)&1);
		if(!tree[now][id])
		{
			tree[now][id]=++tot;
		}
		now=tree[now][id];
	}
} 

int ans=0;
int dfs(int u,int dep)//表示01字典树上编号为u的子树  的最大连通块大小 
{
	if(dep==0) return 1;
	int ans=0;
	if(tree[u][0]&&tree[u][1])
	{
		ans=max(ans,dfs(tree[u][0],dep-1)+1);
		ans=max(ans,dfs(tree[u][1],dep-1)+1);
	}
	else if(tree[u][0])
	{
		ans=max(ans,dfs(tree[u][0],dep-1));
	}
	else if(tree[u][1])
	{
		ans=max(ans,dfs(tree[u][1],dep-1));
	}
	return ans;
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;i++)
	{
		int v;
		scanf("%d",&v);
		insert(v);
	}
	printf("%d\n",n-dfs(1,31));
}

 

 

 
<think>好的,我现在要系统地学习前缀树(Trie)的知识和应用。首先,我需要了解前缀树的基本概念。前缀树,也叫字典树,是一种树形数据结构,用于高效地存储和检索字符串集合。它的每个节点代表一个字符,从根节点到某个节点的路径形成字符串。这可能和二叉树、哈希表不同,我得比较一下它们的区别。 然后,我需要弄清楚前缀树的结构。每个节点应该包含子节点和一个标志来表示是否是单词的结尾。比如,根节点不包含字符,子节点可能是各个字母开头的分支。插入操作时,逐个字符检查是否存在,不存在则创建新节点,最后标记结束。查找操作则是沿着字符路径走,看是否有结束标志。删除可能需要递归地删除无用的节点。 接下来是前缀树的实现方式。常见的可以用数组或哈希表来存储子节点。数组适用于固定字符集,比如小写字母,用索引对应字符;哈希表更灵活,可以处理任意字符。但哈希表的空间可能更大。代码实现的话,可能需要一个TrieNode类,包含子节点和is_end属性。插入、搜索、前缀搜索是基本操作。 然后是时间复杂度的分析。插入和查询的时间都是O(L),L是字符串长度。相比哈希表,虽然查询也是O(1),但哈希表可能有哈希冲突和扩容的问题,而前缀树在处理前缀相关的查询时更有优势,比如查找是否有特定前缀的字符串,这是哈希表做不到的。 应用场景方面,前缀树常用于自动补全、拼写检查、IP路由查找、词频统计等。比如在搜索引擎中输入部分字符,自动提示可能的查询词。另外,前缀树在处理大量字符串时,可以节省空间,特别是当有很多公共前缀的时候。 高级应用可能包括压缩前缀树(如Radix Tree或Patricia Tree),减少节点数,节省空间。还有三向Trie,结合了Trie和二叉搜索树的特性。另外,后缀树是处理字符串后缀的结构,用于快速子串搜索,可能与前缀树有关联但不同。 在实际问题中,比如LeetCode题目,可能有实现Trie的题目(如208题),或者用Trie解决单词搜索、最大异或对(421题)等问题。这时候需要熟悉如何根据问题调整Trie的结构,比如在异或问题中用二进制位构建Trie。 学习资源方面,可以参考算法书籍如《算法导论》,或者在线课程,比如Coursera的算法专项课程。此外,动手实现一个Trie并测试不同操作是必要的,比如用Python或Java编写代码,处理插入、查询、删除等操作。 可能遇到的难点包括处理不同类型的字符(比如Unicode),这时候可能需要更高效的存储方式。另外,删除操作的逻辑比较复杂,需要确保在删除节点时不会影响其他存在的字符串。还有,空间优化方面,如何压缩节点,减少内存使用,比如使用双数组Trie等结构。 总结来说,学习前缀树需要从结构、实现、复杂度、应用及优化等方面逐步深入,同时结合实际问题进行练习,加深理解。</think>学习前缀树(Trie)需要系统掌握其核心概念、实现方法和应用场景。以下是详细的学习路径和知识点整理: -- ### **一、前缀树基础概念** 1. **定义** 前缀树(Trie)是一种树形数据结构,用于高效存储和检索字符串集合。核心特点: - 节点存储字符,路径组成字符串。 - 根节点为空,叶子节点通常表示完整字符串的结束。 - 通过共享前缀优化存储和查询效率。 2. **与哈希表的对比** - **优势**:支持前缀匹配、避免哈希冲突、字典序遍历。 - **劣势**:空间占用较高(可通过压缩优化)。 --- ### **二、前缀树的结构与操作** 1. **节点结构** - **子节点**:数组(固定字符集)或哈希表(动态字符)存储子节点。 - **结束标志**:标记当前节点是否为某个字符串的结尾。 - **附加数据**:词频统计、权重等(依应用场景扩展)。 2. **核心操作** - **插入**:逐字符遍历,不存在则创建新节点,最后标记结束。 - **搜索**:检查路径是否存在且结束标志为真。 - **前缀搜索**:仅检查路径是否存在(不要求结束标志)。 - **删除**:递归删除无子节点且非其他字符串前缀的节点。 3. **代码示例(Python)** ```python class TrieNode: def __init__(self): self.children = {} self.is_end = False class Trie: def __init__(self): self.root = TrieNode() def insert(self, word): node = self.root for char in word: if char not in node.children: node.children[char] = TrieNode() node = node.children[char] node.is_end = True def search(self, word): node = self.root for char in word: if char not in node.children: return False node = node.children[char] return node.is_end def startsWith(self, prefix): node = self.root for char in prefix: if char not in node.children: return False node = node.children[char] return True ``` --- ### **三、时间复杂度分析** | 操作 | 时间复杂度 | |------------|---------------------| | 插入 | O(L)(L为字符串长度)| | 查询 | O(L) | | 前缀查询 | O(L) | -- ### **四、前缀树的应用场景** 1. **自动补全** - 搜索引擎、IDE代码提示等场景的前缀匹配。 2. **拼写检查** - 快速判断单词是否存在于字典。 3. **IP路由最长前缀匹配** - 网络路由表中查找最长匹配IP前缀。 4. **词频统计与热词挖掘** - 扩展节点属性记录词频。 5. **敏感词过滤** - 结合DFA(确定有限状态机)实现高效过滤。 6. **位运算相关题目** - 如最大异或值问题(LeetCode 421),用二进制位构建Trie。 --- ### **五、高级变种与优化** 1. **压缩前缀树(Radix Tree/Patricia Tree)** - 合并单链节点,减少空间占用。 2. **双数组Trie** - 用两个数组(BASE和CHECK)压缩存储,适合大规模数据。 3. **三向Trie(Ternary Search Trie)** - 平衡时间与空间,每个节点含左、中、右子节点。 4. **后缀树(Suffix Tree)** - 构建字符串所有后缀的树,用于快速子串搜索。 --- ### **六、经典问题与实战** 1. **LeetCode练习题** - [208. 实现 Trie](https://leetcode.com/problems/implement-trie-prefix-tree/) - [212. 单词搜索 II](https://leetcode.com/problems/word-ii/)(结合DFS+Trie) - [421. 数组中两个数的最大异或值](https://leetcode.com/problems/maximum-xor-of-two-numbers-in-an-array/) - [720. 词典中最长的单词](https://leetcode.com/problems/longest-word-in-dictionary/) 2. **实际项目应用** - 敏感词过滤系统、搜索引擎建议、路由协议设计。 --- ### **七、学习资源推荐** 1. **书籍** - 《算法导论》(高级数据结构章节) - 《数据结构与算法分析:C语言描述》 2. **在线课程** - Coursera 普林斯顿大学《Algorithms, Part II》 3. **拓展阅读** - 论文《Fast Algorithms for Sorting and Searching Strings》(后缀树相关) --- 通过理论学习结合实战编码,逐步掌握前缀树的核心逻辑和优化技巧,最终能够灵活应用于复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值