- 博客(371)
- 收藏
- 关注
原创 Qwen3-Embedding-8B使用方法
这篇文章介绍了如何使用vLLM库和Qwen3-Embedding-8B模型实现语义搜索功能。主要内容包括:1) 通过结构化指令格式化查询文本;2) 加载嵌入模型生成文本向量;3) 计算查询与文档之间的点积相似度。示例演示了如何评估"中国首都"和"重力解释"两个查询与对应文档的相关性,结果显示模型能准确匹配相关文档。该技术可应用于检索增强生成(RAG)等场景,通过向量相似度实现高效语义搜索。
2025-08-24 15:27:55
750
原创 使用VLLM部署大模型embedding/chat 的API
vLLM 是一个为大型语言模型(LLM)推理和部署服务而设计的、主打高性能和高内存效率的开源库。简单来说,vLLM 的核心目标是让 LLM 的运行更快、更省钱、更容易。无论是进行离线批量处理还是部署在线服务,vLLM 都能显著提升模型的推理速度和吞吐量(即单位时间内处理请求的数量)。
2025-08-23 16:50:34
812
原创 Deepsieve理解多跳(Multi-hop)问题
摘要: DeepSieve是由罗格斯大学团队提出的新一代检索增强生成(RAG)框架,通过LLM驱动的模块化设计解决传统RAG在多跳推理和异构知识源整合中的局限性。其核心创新包括: 智能路由机制:LLM作为“知识指挥官”动态分解复杂问题(如“气候变化对农业影响”拆解为气候模型与作物产量子问题),并路由至最佳知识源(文本/图谱/数据库),减少噪声检索。 四阶段工作流:问题分解→动态路由→执行反思→汇总报告,支持多跳推理链和变量依赖管理(如子问题间传递[出生地]变量)。 高效性能:在MuSiQue和HotpotQ
2025-08-14 11:21:16
753
原创 MiniMind Model Structure 分析
该文章详细解析了MiniMind语言模型的核心组件实现,主要包括: 注意力机制(Attention)实现: 支持多头注意力和分组查询注意力(GQA) 包含旋转位置编码(RoPE)和KV缓存 提供标准注意力和FlashAttention两种计算方式 使用因果掩码实现自回归特性 RMSNorm归一化层: 相比LayerNorm只计算均方根不减去均值 计算效率更高且保持数值稳定性 在大语言模型中表现优异 前馈网络(FFN): 采用SiLU激活函数 包含Dropout正则化 支持专家混合(MoE)扩展 整体架构:
2025-08-06 16:04:38
635
原创 从零训练超小语言模型MiniMind(0.02B)
完全从0开始,仅用3块钱成本 + 2小时!即可训练出仅为25.8M的超小语言模型MiniMind。
2025-08-06 11:43:12
1121
原创 AGNO 框架的信息搜集Toolkit(search+web scraping)
AGNO是一个轻量级开源框架,用于构建具备记忆、知识和推理能力的多智能体系统。它通过"工具"和"工具包"概念,使AI代理能够执行具体任务和与外部世界交互。框架提供多种搜索工具:ArxivTools用于学术论文检索与阅读,支持PDF下载;BaiduSearch提供中文网络搜索;DuckDuckGo作为隐私友好的搜索引擎;ExaTools则提供AI驱动的语义搜索功能,包括内容检索、相似内容查找和智能问答。这些工具都支持参数化配置、结果过滤和超时设置,开发者可根据需求灵活组
2025-08-04 14:53:44
795
原创 AI Competitor Intelligence Agent Team
摘要 该项目是一个基于多API集成的竞争对手智能分析系统,主要功能包括: 系统架构: 采用模块化设计,包含用户界面层、API集成层、业务逻辑层和数据模型层 使用Streamlit构建Web界面,集成OpenAI、Exa、Perplexity和Firecrawl等API服务 核心功能: 通过搜索引擎API获取竞争对手URL 使用Firecrawl的AI爬虫提取结构化数据(公司信息、定价、技术栈等) 生成可视化对比表格和深度分析报告 技术特点: 结合传统爬虫和AI语义理解 使用Pydantic确保数据结构一致性
2025-08-03 20:33:08
641
原创 基于OpenCV的cv2.solvePnP方法实现头部姿态估计
摘要: 本文探讨了基于OpenCV的cv2.solvePnP方法实现头部姿态估计,以区分用户注视电脑屏幕或手机的行为。核心流程包括:1)通过2D面部特征点与预设3D模型点(需优化为解剖学准确模型)求解PnP问题;2)转换为欧拉角(俯仰角、偏航角、翻滚角)分析头部朝向。研究发现,手机使用与显著正向俯仰角相关,但需通过实验数据确定场景特异性阈值(如20°),而非依赖通用值。关键改进包括采用标定相机参数、优化3D模型及标准化角度提取方法,以提升系统鲁棒性。最终结合姿态分析与清晰度评分,实现用户注意力状态的可靠推断
2025-08-01 16:40:33
706
原创 解读LISA:通过大型语言模型实现推理分割
LISA是一种突破性的多模态AI模型,开创性地将大型语言模型(LLM)的推理能力与图像分割任务结合,提出"推理分割"新范式。其核心创新在于"Embedding as Mask"机制,通过特殊_TOKEN将LLM的文本输出引导至像素级分割任务。模型采用高效微调策略,在少量专业数据训练下即展现出强大的零样本能力,在ReasonSeg基准测试中gIoU达64.2%。LISA不仅实现了对复杂语言指令的理解和精确分割,更推动了AI从感知智能向认知智能的跨越,为多模态交互开辟了新
2025-08-01 11:24:00
942
原创 多模态智能体(Agent)框架——Agno
Agno是一个轻量级多模态智能体开发框架,支持构建具有记忆、知识和推理能力的多智能体系统。其核心优势包括:极高性能(智能体实例化仅需2-3微秒)、超低内存占用(3.75-6.5KiB/智能体)以及对文本、图像、音频的多模态处理能力。框架采用模型无关设计,支持连接OpenAI、Anthropic等多种AI服务商。学习资源主要包括官方文档、GitHub代码库和社区支持,目前缺乏官方认证课程。典型应用场景涵盖金融分析、智能客服、个性化推荐等领域。开发路径建议分四阶段:基础入门→核心能力掌握→多智能体协作→生产部署
2025-07-29 10:29:25
1830
原创 深度研究——OpenAI Researcher Agent(使用OpenAI Agents SDK)
OpenAI Agents SDK 是一个基于Python的轻量级框架,用于构建多智能体协作系统。该框架支持自定义工具、多代理协作和任务交接,可用于自动化研究、报告生成等复杂任务。核心组件包括Agent类(定义智能体角色和指令)、Runner类(执行智能体流程)和工具系统(集成外部API)。开发者可以通过环境变量配置OpenAI API密钥,使用异步编程实现智能体交互。该SDK还提供调试追踪和安全护栏功能,确保系统行为符合预期。适用于客户服务、数据分析、自动化研究等多个领域,显著降低了构建复杂AI应用的门槛
2025-07-28 22:01:21
1028
原创 多目标跟踪——DeepSORT 算法
摘要:DeepSORT算法通过融合深度外观特征(CNN提取的128维Re-ID向量)与运动建模(卡尔曼滤波),显著提升了多目标跟踪在遮挡场景的鲁棒性,相比SORT算法ID切换率降低34%。其双模态关联机制结合马氏距离与余弦相似度优化匹配,后续变体(如HyperDeepSORT)通过自适应卡尔曼滤波和HyperNMS进一步优化性能。硬件部署中,边缘设备采用FP16量化或轻量化模型(如MobileNet)可平衡速度与精度,Jetson Orin Nano在能效比上表现突出。未来研究方向包括知识蒸馏压缩模型和光流
2025-07-24 14:03:14
729
原创 DBSCAN聚类算法
DBSCAN算法在复杂数据聚类中的应用与优化 摘要:本文深入分析了DBSCAN算法的核心原理、参数影响及优化方法。研究显示,DBSCAN的聚类效果主要受eps和minPts两个参数影响,合理选择参数对结果至关重要。与传统算法相比,DBSCAN在噪声处理和任意形状聚类方面具有优势。针对高维数据挑战,提出了降维预处理、参数自适应等优化方案。近年来的GPU加速和分布式计算技术显著提升了算法性能。文章还介绍了DBSCAN在地理空间分析、异常检测等领域的应用案例,并提供了基于人脸特征聚类的Python实现代码。最后指
2025-07-21 23:33:26
1090
2
原创 基于ArcFace损失函数训练的人脸特征提取模型
摘要:ArcFace是一种基于加性角余量损失(Additive Angular Margin Loss)的深度人脸识别算法,通过在角度空间引入固定余量增强类间可分性。相比传统Softmax,其决策边界更清晰,特征分离效果更优(LFW准确率99.83%)。核心实现包括双L2归一化和角余量惩罚(典型参数s=64,m=0.5),支持工业级应用如智慧安防(10万+人脸库实时识别)。通过Partial-FC和CurricularFace等改进方案,在保持精度的同时显著提升训练效率(显存占用降95%)。当前面临低光照场
2025-07-21 17:13:44
1054
原创 敏捷开发的历史演进:从先驱实践到全域敏捷(1950s-2025)
敏捷开发经历了从1950年代迭代思想萌芽到2001年《敏捷宣言》确立的发展历程。早期实践包括1980年代快速原型设计、1990年代Scrum和极限编程(XP)的提出。2001年17位专家签署《敏捷宣言》,确立四大核心价值观。2010年后进入规模化阶段,SAFe框架迭代并广泛应用于金融、医疗等行业。2020年后与AI、云原生等技术深度融合,向非IT领域扩展。看板方法通过可视化工作流、限制在制品(WIP)数量等实践,成为敏捷主流工具之一。敏捷开发强调响应变化高于遵循计划,其核心理念持续指导着软件开发范式的演进。
2025-07-20 11:36:39
912
原创 人脸检测算法——SCRFD
SCRFD是一种高效人脸检测算法,通过双重重分配策略(样本重分配SR和计算重分配CR)实现性能优化。其特点包括:1)采用无锚框检测机制,基于FCOS实现边界框预测;2)通过NAS动态分配计算资源,优化骨干网络、特征金字塔和检测头的计算比例;3)支持多规格模型(0.5GF-34GF)和硬件加速(FP16/INT8量化)。在WIDERFACE数据集上,SCRFD-34GF以11.7ms推理延迟实现85.29%的Hard AP,性能优于RetinaFace。代码实现完整封装了图像预处理、模型推理和结果后处理流程,
2025-07-18 22:55:45
978
原创 【软件运维】前后端部署启动的几种方式
这个 Makefile 提供了一个简洁的接口来管理常见的开发任务,通过简单的make dev命令就能启动整个开发环境,大大简化了开发者的工作流程。它体现了 Makefile 作为项目任务自动化工具的经典用法,特别适合需要同时管理多个服务的项目。一、后端启动方式。
2025-07-09 14:19:36
765
原创 【AI应用开发数据基建】从非结构化数据到结构化知识的通用转化流程
确定数据来源(文档、视频、音频、图片、社交媒体等):设计可扩展的批量处理机制。
2025-06-12 23:44:02
1273
原创 【思考】对“私有化利润,公有化风险”现象的思考
在缺乏制度约束的资本主义游戏中,社会大众永远是最后的接盘侠。要打破这种“大而不倒”的魔咒,需要的不仅是技术性修补,更是对“企业-社会”契约关系的重构——当企业享受规模红利时,必须同步承担对等的社会责任。否则,所谓的“市场规律”不过是特权者收割弱者的遮羞布罢了。房地产有金融属性,对于普通人来说还有哪些也是?房地产因其兼具居住属性和金融属性,成为普通人最熟悉的“投资品”之一。但实际上,许多看似普通的消费或资产,同样具备金融属性——它们可能成为财富增值的工具,也可能成为风险传导的载体。
2025-06-03 00:32:31
1126
原创 从零构建知识图谱应用:Neo4j安装、CQL与Python全栈开发实战
name: strpass# 如果你想在响应中包含 Neo4j 内部 ID,可以添加,但不推荐直接暴露title: strpass。
2025-06-02 23:09:11
1142
原创 【高并发】Celery + Redis异步任务队列方案提高OCR任务时的并发
线程池在处理OCR任务时仍会阻塞请求,主要原因包括:请求-响应周期未分离、共享进程资源、Python的GIL限制等。这些问题导致高并发请求时线程池满,新请求被阻塞,长任务占用线程,资源竞争加剧。相比之下,Celery+Redis提供了更好的解决方案,通过异步任务队列实现真正的异步解耦,资源隔离,可靠性保障和状态监控。Celery+Redis的优势包括:立即返回任务ID,独立进程处理OCR,任务持久化和自动重试,支持实时查询任务状态。性能对比显示,Celery+Redis在请求响应时间、最大并发处理能力、资源
2025-05-09 18:10:32
1462
1
原创 【Flask】ORM模型以及数据库迁移的两种方法(flask-migrate、Alembic)
在Flask中,ORM模型通常是通过SQLAlchemy(最流行的Python ORM工具)或类似的库来定义的。一个ORM模型对应数据库中的一个表。
2025-05-05 20:53:10
1278
原创 【JWT+OAuth】Fastapi+Vue中的用户权限管理设计
它是一个装饰器工厂函数,接收一个权限名称作为参数,返回一个 FastAPI 依赖项用于检查当前请求的用户是否拥有指定的权限。
2025-05-03 23:28:51
1043
3
原创 DeepSeek谈《凤凰项目 一个IT运维的传奇故事》
这本书的价值不仅在于DevOps技术实践,更在于对组织文化和思维模式的颠覆——正如Erik所言:"IT工作的目标不是更努力,而是更聪明。)是Gene Kim、Kevin Behr和George Spafford合著的一部小说,通过虚构的故事生动展现了IT运维中的核心挑战和DevOps文化的变革力量。:小说中濒临失败的IT项目代号,象征传统IT管理方式(冗长流程、部门壁垒)的困境。例如:代码扫描(SAST)、依赖检查(SCA)、运行时防护(RASP)。
2025-04-30 18:54:18
882
原创 Git从入门到协作:开发者必备的版本控制指南
例如,如果你的本地分支与远程仓库的 `origin/master` 分支关联,执行 `git pull origin master` 会将 `origin/master` 的最新更改合并到你的本地 `master` 分支。当你执行 `git pull` 命令时,Git 会先执行 `fetch` 操作,然后自动将远程分支的最新更改合并到你的当前分支。其中 `<remote-name>` 是你为远程仓库指定的名称(通常为 `origin`),`<remote-url>` 是远程仓库的 URL。
2025-04-24 00:33:40
816
原创 Pytorch实用教程(一):torch.compile计算提速
开源仓库:TingsongYu/PyTorch-Tutorial-2nd: 《Pytorch实用教程》(第二版)无论是零基础入门,还是CV、NLP、LLM项目应用,或是进阶工程化部署落地,在这里都有。相信在本书的帮助下,读者将能够轻松掌握 PyTorch 的使用,成为一名优秀的深度学习工程师。在线阅读:简介 · PyTorch实用教程(第二版) (tingsongyu.github.io)
2025-04-22 14:10:25
1239
原创 【Flask】Explore-Flask:早期 Flask 生态的实用指南
PEP 8 和文档字符串仍是 Python 开发的基石,但可通过工具自动化。
2025-04-21 13:26:11
661
原创 【开源项目】Excel手撕AI算法深入理解(四):注意力机制(Self-Attention、Multi-head Attention)
多头注意力的核心思想是“分而治之”分:通过多组投影并行学习多样化的注意力模式。合:拼接并融合所有头的输出,得到更全面的表示。这种设计让 Transformer 能够同时处理复杂依赖关系(如长距离依赖、多类型关系),成为现代 NLP 的基石。
2025-04-17 20:39:24
934
原创 【开源项目】Excel手撕AI算法深入理解(二):多层压缩重建(Autoencoder、Multi-Layer Perceptron (MLP)、Residual Network (ResNet))
Autoencoder 的核心是通过“压缩-重建”学习数据的本质特征。理解其数学原理(如与 PCA 的关系)和变体(如 VAE)是深入应用的关键。
2025-04-16 20:34:44
780
原创 【开源项目】Excel手撕AI算法深入理解(三):时序(RNN、mamba、Long Short Term Memory (LSTM)、xLSTM)
Selection:赋予模型动态过滤能力,是Mamba的核心创新。:通过时变递归实现自适应记忆。:将连续理论落地为可计算的离散操作。
2025-04-15 23:11:44
1288
原创 【开源项目】Excel手撕AI算法深入理解(五):进阶(Transformer、Transformer-Full-Stack、AlphaFold)
原始论文(《Attention Is All You Need》)中采用modeldff=4×dmodel(如512→2048),这是经验性选择平衡模型容量和计算效率。实验表明,扩展倍数小于4可能导致性能下降,大于4则收益递减。2.3 解码器层(Decoder Layer)比编码器多一个掩码多头注意力(Masked Multi-Head Attention)掩码机制:防止解码时看到未来信息(训练时用三角矩阵掩码)。编码器-解码器注意力:解码器的Q来自上一输出,K/V来自编码器输出。3. 关键数学细节。
2025-04-13 17:21:01
917
原创 【开源项目】Excel手撕AI算法深入理解(一):基础(ReLU、SoftMax、Temperature)
定义ReLU和LeakyReLUrelu = nn.ReLU() # 默认参数print(relu(x)) # 输出: tensor([0., 0., 2.])print(leaky_relu(x))# 输出: tensor([-0.0100, 0.0000, 2.0000])概率化输出将神经网络的原始输出(可能为任意实数)转换为 0 到 1 之间的概率值,且所有类别的概率之和为 1。
2025-04-13 14:06:09
802
原创 【书籍】DeepSeek谈《持续交付2.0》
持续交付2.0》是乔梁在经典著作《持续交付》基础上的升级版本,它不仅延续了第一版的核心思想,还结合了数字化转型时代的新需求,提出了更系统化的方法论。
2025-04-11 00:21:20
1129
原创 【书籍】DeepSeek谈《程序员修炼之道-通向务实的最高境界》
程序员修炼之道》(The Pragmatic Programmer)是一本超越具体技术的开发者思维指南,它教会我们如何以「务实者」而非「码农」的视角看待软件开发。
2025-04-05 16:53:13
961
原创 【大模型】两种工具调用模式:预制工具 vs 动态代码生成
预制工具调用和动态代码生成各有优劣,没有绝对的好坏之分。开发者应根据具体应用场景的安全要求、灵活性需求和开发资源,选择最适合的模式或组合。在大多数企业级应用中,混合模式往往能提供最佳的平衡点。
2025-04-05 15:00:46
1146
原创 【Pandasai】理解SmartDataframe 类:对dataframe添加自然语言处理能力
将普通 pandas DataFrame 转换为具有自然语言交互能力的智能 DataFrame通过 chat() 方法允许用户用自然语言查询数据维护数据表的元信息(名称、描述等)提供便捷的属性和方法访问底层 DataFrameAgent 类的主要职责是:接收自然语言查询生成相应的数据处理代码执行生成的代码处理执行结果或错误维护对话上下文和状态。
2025-04-05 12:07:52
940
原创 【书籍】DeepSeek谈《人月神话》
人月神话》是软件工程领域的经典之作,Fred Brooks 以其在 IBM System/360 项目中的深刻经验为基础,提出了许多至今仍被广泛讨论的洞见。
2025-04-05 10:43:27
840
原创 【书籍】DeepSeek谈《软件开发的201个原则》
软件开发的201个原则》(201 Principles of Software Development)是一本经典的软件开发指南,浓缩了行业经验和最佳实践。)的实施时机,我的建议是:既不是完全在写代码时立即封装,也不是等项目完成后再处理,而是一个渐进式、有意识的平衡过程。不要过度设计:在首次编写代码时,如果某段逻辑的复用性不明显(例如只被调用1次),可以先实现功能,确保代码正确性。” 前端分层:数据层(Axios)、逻辑层(Composition API)、视图层(模板)分离。
2025-03-29 15:37:27
774
原创 【源码阅读/Vue & Flask前后端】简历数据查询功能
一般就是三个层面,model层面用来建立数据库的字段,service用来对model进行操作,写一些数据库操作的代码,route就是具体的功能了,其中会包含一些数据库service层的函数。
2025-03-29 15:09:49
878
遥感-PROSAIL模型-LAI反演
2025-02-19
赵英时《遥感应用分析原理与方法》上课PPT
2023-11-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人