5.10 Memory Networks 记忆网络的应用与方法

本文深入探讨了记忆网络在自然语言处理中的应用和方法,包括基本框架、流程、损失函数和QA问题。介绍了End-to-End Memory Networks的单层和多层结构,以及Key-Value Memory Networks和Dynamic Memory Networks的特点。动态记忆网络通过输入、问题、情景记忆和回答模块,利用注意力机制和门控GRU进行记忆更新。模型的扩展部分涉及DMTN和DMN+,它们改进了Attention机制和记忆更新,提升了模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Memory Networks经典论文:

  • Memory Networks (Facebook AI Research/2015)
  • End-To-End Memory Networks(2015)
  • Key-Value Memory Networks for Directly Reading Documents(2016)
  • Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2016)
  • Dynamic Memory Networks for Visual and Textual Question Answering (2016)

1、记忆网络

Memory Networks提出的最大卖点就是具备长期记忆(long-term memory),虽然当时RNN在文本处理领域十分有效,但是其对信息的长期记忆能力并不理想。Memory Networks的长期记忆思路其实也非常简单暴力,直接采用额外的记忆模块来保存之前的信息,而不是通过cell之间的hidden state传递。

框架

Memory Networks主要由一个记忆模块 m m

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炫云云

你的鼓励是我创作最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值