pytorch实现Inception网络并绘制loss图片(MNIST为例)

参考博客-zhiguo98
个人体会:Inception块需要卷积核与池化层保证same.多个分支才能拼接成同样大小的块,区别是各个分支的通道数不同,最后由反向传递自己选择哪一个分支作为中间层.

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt


transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,),(0.3081,))

])

train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)

train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=True)


# 构建Inception模型
class MyInception(nn.Module):
    def __init__(self, in_channels):
        super(MyInception, self).__init__()
        # 以下所有卷积核以及池化层都是same操作
        # 第一个分支 (1,28,28)
        self.branch1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=16,
            kernel_size=1
        )

        # 第二个分支
        self.branch2 = nn.Sequential(
            
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值