大语言模型科普

大语言模型概述

定义与特点

什么是大语言模型
  • 也叫LLM (Large Language Model)
  • 用于做自然语言相关任务的深度学习模型
  • 给模型一些文本内容输入,它能返回相应的输出
主要功能
  • 生成
  • 分类
  • 总结
  • 改写

发展里程碑

ChatGPT的影响
  • 2022年11月30日OpenAI发布ChatGPT
  • 成为当下最快达到100万用户的线上产品
  • 带动大语言模型成为时下热点
  • 更多AI聊天助手雨后春笋般出现
基于大语言模型的应用
  • ChatGPT
  • Claude
  • 文心一言
  • 通义千问

大语言模型的"大"

训练数据巨大

GPT-3训练数据来源
  • 多个互联网文本语料库
  • 线上书籍
  • 新闻文章
  • 科学论文
  • 维基百科
  • 社交媒体帖子
数据的作用
  • 借助海量训练文本数据
  • 模型能更多了解单词与上下文之间的关系
  • 更好地理解文本的含义
  • 生成更准确的预测

参数数量巨大

什么是参数
  • 模型内部的变量
  • 可以理解为是模型在训练过程中学到的知识
  • 参数决定了模型如何对输入数据做出反应
  • 从而决定模型的行为
参数增长的意义
  • 用更多的数据和算力来训练具有更多参数的模型
  • 很多时候能带来更好的模型表现
  • 类比:AI学习做蛋糕,可调整的变量更多,更能模仿做出更好吃的蛋糕
  • 随着参数的增加,甚至有能力做出别的玩意儿,创造一些全新的品种
GPT系列参数发展
  • GPT-1:1.17亿个参数
  • GPT-2:15亿个参数
  • GPT-3:1750亿个参数
大模型与小模型的区别
  • 大模型不像小模型那样局限于单项或某几项任务
  • 具有更加广泛的能力
  • 以前:需要训练单独的模型,分别去做总结、分类、提取等任务
  • 现在:一个大模型就可以搞定这一切

技术发展历程

技术发展的里程碑

2017年:Transformer架构诞生
  • 2017年6月,谷歌团队发表论文"attention is all you need"
  • 提出了transformer架构
  • 自此,自然语言处理的发展方向被改变了
2018-2019年:基于Transformer的模型涌现
  • 2018年:OpenAI发布GPT-1.0,谷歌发布BERT
  • 2019年:OpenAI发布GPT-2.0,百度发布AI1.0
大语言模型发展特点
  • 发展早就如火如荼了
  • 并不是像很多人以为的到了2022年才有所突破
  • ChatGPT因为直接向公众开放才被大众关注

ChatGPT背后的技术

GPT的含义
  • G:Generative(生成式)
  • P:Pre-trained(预训练)
  • T:Transformer(转换器)
  • 表明transformer是其中的关键

Transformer架构详解

传统RNN的局限性

RNN的工作方式
  • 按顺序逐字处理
  • 每一步的输出取决于先前的隐藏状态和当前的输入
  • 要等上一个步骤完成后才能进行
RNN的问题
  • 当前的计算机无法并行计算
  • 训练效率低
  • 不擅长处理长序列(长文本)
  • 时间距离越远,前面对后面的影响越弱
  • 难以有效捕获到长距离的语义关系
实际例子
  • 在人类自然语言中,依赖信息之间距离较远是很常见的情况
  • 如果由RNN生成后续内容,到了关键位置时,可能已经把前面的信息忘没了
LSTM的改进与局限
  • LSTM长短期记忆网络是RNN的改良版本
  • 为了捕获长距离依赖性
  • 但依然没有解决传统RNN无法并行计算的问题
  • 在处理非常长的序列时也依然受到限制

Transformer的创新

核心能力
  • 有能力学习输入序列里所有词的相关性和上下文
  • 不会受到短时记忆的影响
自注意力机制
工作原理
  • transformer在处理每个词的时候,不仅会注意这个词本身以及它附近的词
  • 还会去注意输入序列里所有其他的词
  • 然后给每个词不一样的注意力权重
权重的获得
  • 权重是模型在训练过程中通过大量文本逐渐习得的
  • transformer有能力知道当前这个词和其他词之间的相关性有多强
  • 然后去专注于输入里真正重要的部分
长距离依赖处理
  • 即使两个词的位置隔得很远,transformer依然可以捕获到它们之间的依赖关系
  • 例子:单从语法上来讲,“IT"可以指的是离得更近的"street”,也可以是离得更远的"animal"
  • 自注意力机制捕获到了"IT"和"animal"之间更强的关系,因此更集中在"animal"上
位置编码
位置的重要性
  • 在语言里,顺序很重要
  • 即使句子里包含的字都是一样的,但顺序不一样也能导致意思大相径庭
  • 这也是为什么自然语言处理领域会用"序列"这个词
RNN的处理方式
  • RNN和人类阅读文本一样,对输入序列同样是按顺序依次处理
  • 这就造成了训练速度的瓶颈,因为只能串行,没办法并行
  • 也就是没法同时去学习所有信息
Transformer的位置编码方案
  • 再把词输入给神经网络前,除了会先对词进行嵌入转换成向量
  • 也就是把词用一串数字表示
  • 还会把每个词在句子中的位置也用一串数字表示
  • 添加到输入序列的表示中,然后把这个结果给神经网络
位置编码的优势
  • 大模型既可以理解每个词的意义,又能够捕获词在句子中的位置
  • 从而理解不同词之间的顺序关系
  • 借助位置编码,词可以不按顺序输入给transformer
  • 模型可以同时处理输入序列里的所有位置,而不需要像RNN那样依次处理
并行计算优势
  • 在计算时,每个输出都可以独立的计算
  • 不需要等待其他位置的计算结果
  • 这大大提高了训练速度
  • 训练速度一快,训练出巨大的模型也不是那么难了

Transformer的影响

对当前大语言模型的贡献
  • 自"attention is all you need"论文之后
  • transformer以及它的变体已经被普遍运用在大型数据集上来训练大语言模型
  • transformer架构对我们当下能拥有那么多牛叉的大语言模型功不可没
### 大模型在科普工作中的应用和优势 #### 提供个性化学习体验 大模型能够根据用户的兴趣、背景知识水平以及学习进度提供个性化的科普内容。通过自然语言处理技术和对话机制,大模型可以根据用户输入调整解释难度和风格,使科学概念更容易被不同年龄段的人群理解[^2]。 #### 实现即时互动答疑解惑 借助强大的文本生成能力,大模型可以在短时间内为用户提供详细的解答,并且支持多轮次交互式问答。这种特性使得即使是在缺乏专业教师指导的情况下,人们也能获得及时有效的帮助,解决了传统教育资源分布不均衡的问题[^1]。 #### 辅助创作高质量科普材料 利用大模型自动生成文章摘要、图表说明等功能可以帮助创作者快速整理复杂的信息并转化为易于传播的形式;同时还能辅助审核已有的科普作品是否存在误导性的描述或错误信息,从而提升整体质量[^4]。 #### 支持跨学科融合教学 由于具备广泛的知识库覆盖范围,大模型可以轻松跨越多个学科边界来构建综合性的课程体系,促进STEM(Science, Technology, Engineering and Mathematics)教育理念下的创新人才培养模式发展[^3]。 ```python def generate_science_explanation(topic, user_profile): """ Generate a personalized science explanation based on the given topic and user profile. Args: topic (str): The scientific concept to explain. user_profile (dict): Information about the user's background knowledge level etc. Returns: str: A tailored explanation of the specified scientific concept. """ pass # Implementation would involve using a pre-trained large language model API ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值