理论知识推导
支持向量机(SVM)是一种用于分类和回归分析的监督学习模型。在处理非线性数据时,线性SVM可能无法很好地分离数据。为了解决这个问题,我们使用核函数将低维空间的非线性数据映射到高维空间,使得在高维空间中可以线性分离。
核函数
非线性SVM的目标函数
目标是找到最优分离超平面,使得分类间隔最大。其优化问题如下:
实施步骤与参数解读
- 导入库
- 生成多维数据集
- 数据标准化
- 分割数据集
- 训练未优化的非线性SVM模型
- 预测并评估未优化模型
- 优化模型(调整核函数和参数)
- 训练优化后的非线性SVM模型
- 预测并评估优化后的模型
- 可视化结果
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection imp