池化层(Pooling Layer)通常用于卷积神经网络中,以减少特征的空间尺寸(高度和宽度),从而降低参数的数量和计算复杂度,同时使特征检测更加鲁棒。池化层的操作通常是确定性的,不涉及权重学习。
池化层的输入输出计算公式:
假设输入特征图 III 的尺寸为 Hin×WinH_{in} \times W_{in}Hin×Win,其中 HinH_{in}Hin 是输入特征图的高度,WinW_{in}Win 是宽度。池化操作通常有以下参数:
- 池化窗口大小 FFF(例如,F=2F = 2F=2 或 F=3F = 3F=3 等)。
- 步长 SSS(窗口移动的步长,SSS 通常等于或小于 FFF)。
- 填充 PP