池化层的输入输出计算公式

池化层(Pooling Layer)通常用于卷积神经网络中,以减少特征的空间尺寸(高度和宽度),从而降低参数的数量和计算复杂度,同时使特征检测更加鲁棒。池化层的操作通常是确定性的,不涉及权重学习。

池化层的输入输出计算公式:

假设输入特征图 III 的尺寸为 Hin×WinH_{in} \times W_{in}Hin×Win,其中 HinH_{in}Hin 是输入特征图的高度,WinW_{in}Win 是宽度。池化操作通常有以下参数:

  • 池化窗口大小 FFF(例如,F=2F = 2F=2F=3F = 3F=3 等)。
  • 步长 SSS(窗口移动的步长,SSS 通常等于或小于 FFF)。
  • 填充 PP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值