数字图像处理之几何变换理论理解篇

本文深入探讨了数字图像处理中的几何变换,包括平移、镜像、转置、缩放和旋转。通过数学公式解析了各种变换中像素坐标的关系,强调了在编程实现时的注意事项,如取整函数的使用和旋转中心的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数字图像处理之几何变换理论理解篇

几何变换,不改变图像的像素值,只是改变图像的坐标位置

解题方法,求新图像与原始图像的对应坐标之间的关系

1、图像平移

x1=x0+a;
y1=y0+b;
J(i,j)=I(i-a,j-b);

2、图像镜像

(1)水平镜像

x1=M-x0;
y1=y0;
J(i,j)=I(i,N-j+1);
(此处要理解x,y与M,N关系,M,N是图像的行数与列数,x是列坐标,y是行坐标,水平镜像沿平行y轴方向翻转,y坐标不变,在编程时,i是行坐标,j是列坐标)

(2)垂直镜像

x1=x0;
y1=N-y0;
J(i,j)=I(M-i+1,j);
(垂直翻转,x坐标不变,也就是列坐标j不变)

(3)水平垂直镜像

J(i,j)=I(M-i+1,N-j+1);

3、图像转置

图像转置即为行列互换,灰度值直接看成矩阵的元素
x1=y0;
y1=x0;
J=I’;

4图像缩放

指图像大小按照指定的比率放大或缩小,改变图像的尺寸
x1=ax0;
y1=a
y0;
(理解:假如我原来图像33规格,现在变成99规格的话,我可以把每一个边缘往外扩张3倍,如果原来是99,现在是33的话,我可以每三个边缘抽取一条)
编程时候要注意取整函数,floor与ceil
J(i,j)=I(x,y);
缩小情况:
x=floor(i/times);
y=floor(j/times);或者ceil也可以
放大情况:
x=ceil(i/ti

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值